403
Views
4
CrossRef citations to date
0
Altmetric
Award Review

Structural studies on bacterial system used in the recognition and uptake of the macromolecule alginate

, &
Pages 794-802 | Received 04 Dec 2018, Accepted 29 Jan 2019, Published online: 11 Feb 2019

References

  • Haug A, Larsen B, Smidsrød B. Uronic acid sequence in alginate from different sources. Carbohydr Res. 1974;32:217–225.
  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37:106–126.
  • Szekalska M, Pucilowska A, Szymanska E, et al. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polm Sci. 2016;7697031:17.
  • Rehm BH, Valla S. Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol. 1997;48:281–288.
  • Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol. 1995;15:162–168.
  • Hay ID, Rehman ZU, Moradali MF, et al. Microbial alginate production, modification and its applications. Microb Biotechnol. 2013;6:637–650.
  • Kawai S, Murata K. Biofuel production based on carbohydrate from both brown and red macroalgae: recent developments in key biotechnologies. Int J Mol Sci. 2016;17:145.
  • Takagi T, Kuroda K, Ueda M. Platform construction of molecular breeding for utilization of brown macroalgae. J Biosci Bioeng. 2018;125:1–7.
  • White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol. 1996;7:301–306.
  • Kawasaki S, Moriguchi R, Sekiya K, et al. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol. 1994;176:284–290.
  • Hisano T, Yonemoto Y, Yamashita T, et al. Direct uptake of alginate molecules through a pit on the bacterial cell surface: a novel mechanism for the uptake of macromolecules. J Ferment Bioeng. 1995;79:538–544.
  • Hisano T, Kimura N, Hashimoto W, et al. Pit structure on bacterial cell surface. Biochem Biophys Res Commun. 1996;220:979–982.
  • Hashimoto W, Momma K, Maruyama Y, et al. Structure and function of bacterial super-biosystem responsible for import and depolymerization of macromolecules. Biosci Biotechnol Biochem. 2005;69:673–692.
  • Hashimoto W, He J, Wada Y, et al. Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry. 2005;44:13783–13794.
  • Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61:682–699.
  • Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.
  • Oldham ML, Davidson AL, Chen J. Structural insights into ABC transporter mechanism. Curr Opin Struct Biol. 2008;18:726–733.
  • Locher KP. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci. 2009;364:239–245.
  • Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009;10:218–227.
  • Oldham ML, Chen J. Snapshots of the maltose transporter during ATP hydrolysis. Proc Natl Acad Sci USA. 2011;108:15152–15156.
  • Slotboom DJ. Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol. 2014;12:79–87.
  • Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 2016;23:487–493.
  • Rice AJ, Park A, Pinkett HW. Diversity in ABC transporters: type I, II, and III importers. Crit Rev Biochem Mol Biol. 2014;49:426–437.
  • Hollenstein K, Frei DC, Locher KP. Structure of an ABC transporter in complex with its binding protein. Nature. 2007;446:213–216.
  • Oldham ML, Khare D, Quiocho FA, et al. Crystal structure of a catalytic intermediate of the maltose transporter. Nature. 2007;450:515–521.
  • Kadaba NS, Kaiser JT, Johnson E, et al. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science. 2008;321:250–253.
  • Yu J, Ge J, Heuveling J, et al. Structural basis for substrate specificity of an amino acid ABC transporter. Proc Natl Acad Sci USA. 2015;112:5243–5248.
  • Aizawa S. The flagellar world. NY: Academic Press; 2014.
  • Maruyama Y, Momma M, Mikami B, et al. Crystal structure of a novel bacterial cell-surface flagel-lin binding to a polysaccharide. Biochemistry. 2008;47:1393–1402.
  • Yonekura K, Maki-Yonekura S, Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature. 2003;424:643–650.
  • Yonemoto Y, Murata K, Kimura A, et al. Bacterial alginate lyase: characterization of alginate lyase-producing bacteria and purification of the enzyme. J Ferment Bioeng. 1991;72:152–157.
  • Maruyama Y, Kobayashi M, Murata K, et al. Formation of a single polar flagellum by two distinct flagellar gene sets in Sphingomonas sp. strain A1. Microbiology. 2015;161:1552–1560.
  • Kobayashi M, Konishi H, Maruyama Y, et al. Lateral-typed flagellin responsible for formation of a polar flagellum but not of lateral flagella in Sphingomonas sp. strain A1. Microbiology. 2016;162:2042–2052.
  • Leifson E. Atlas of bacterial flagellation. NY: Academic Press; 1960.
  • McCater LL. Dual flagellar systems enable motility under different circumstances. J Mol Biol. 2004;7:18–29.
  • Merino S, Shaw JG, Tomás JM. Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett. 2006;263:127–135.
  • Faulds-Pain A, Birchall C, Aldridge C, et al. Flagellin redundancy in Caulobacter crescentus and its implications for flagellar filament assembly. J Bacteriol. 2011;193:2695–2707.
  • He J, Ochiai A, Fukuda Y, et al. A putative lipoprotein of Sphingomonas sp. strain A1 binds alginate rather than a lipid moiety. FEMS Microbiol Lett. 2008;288:221–226.
  • Cao J, Woodhall MR, Alvarez J, et al. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157: H7. Mol Microbiol. 2007;65:857–875.
  • Rajasekaran MB, Nilapwar S, Andrews SC, et al. EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport. Biometals. 2010;23:1–17.
  • Maruyama Y, Ochiai A, Mikami B, et al. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif. Biochem Biophys Res Commun. 2011;405:411–416.
  • Temtrirath K, Murata K, Hashimoto W. Structural insights into alginate binding by bacterial cell-surface protein. Carbohydr Res. 2015;404:39–45.
  • Temtrirath K, Okumura K, Maruyama Y, et al. Binding mode of metal ions to the bacterial iron import protein EfeO. Biochem Biophys Res Commun. 2017;493:1095–1101.
  • Scheepers GH. Lycklama A Nijeiholt JA, Poolman B. An updated structural classification of substrate-binding proteins. FEBS Lett. 2016;590:4393–4401.
  • Culurgioni S, Harris G, Singh AK, et al. Structural basis for regulation and specificity of fructooligosaccharide import in Streptococcus pneumoniae. Structure. 2017;25:79–93.
  • Nishitani Y, Maruyama Y, Itoh T, et al. Recognition of heteropolysaccharide alginate by periplasmic solute-binding proteins of a bacterial ABC transporter. Biochemistry. 2012;51:3622–3633.
  • Momma K, Mishima Y, Hashimoto W, et al. Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry. 2005;44:5053–5064.
  • Mishima Y, Momma K, Hashimoto W, et al. Crystal structure of AlgQ2, a macromolecule (alginate)-binding protein of Sphingomonas sp. A1, complexed with an alginate tetrasaccharide at 1.6-Å resolution. J Biol Chem. 2003;278:6552–6559.
  • Momma K, Okamoto M, Mishima Y, et al. A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J Bacteriol. 2000;182:3998–4004.
  • Maruyama Y, Itoh T, Kaneko A, et al. Structure of a bacterial ABC transporter involved in the import of an acidic polysaccharide alginate. Structure. 2015;23:1643–1654.
  • Kaneko A, Uenishi K, Maruyama Y, et al. A solute-binding protein in the closed conformation induces ATP hydrolysis in a bacterial ATP-binding cassette transporter involved in the import of alginate. J Biol Chem. 2017;292:15681–15690.
  • Takeda T, Yoneyama F, Kawai S, et al. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci. 2011;4:2575–2581.
  • Aso Y, Miyamoto Y, Harada KM, et al. Engineered membrane super-channel improves bioremediation potential of dioxin-degrading bacteria. Nat Biotechnol. 2006;24:188–189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.