177
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Intracellular release of rapamycin from poly (lactic acid) nanospheres modifies autophagy

, &
Pages 1291-1302 | Received 16 Mar 2016, Accepted 25 May 2016, Published online: 29 Jun 2016

References

  • Cuervo AM, Macian F. Autophagy, nutrition and immunology. Mol. Aspects Med. 2012;33:2–13.10.1016/j.mam.2011.09.001
  • Murrow L, Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. 2013;8:105–137.10.1146/annurev-pathol-020712-163918
  • Wirawan E, Berghe TV, Lippens S, et al. Autophagy: for better or for worse. Cell Res. 2012;22:43–61.10.1038/cr.2011.152
  • He LQ, Lu JH, Yue ZY. Autophagy in ageing and ageing-associated diseases. Acta Pharmacol. Sin. 2013;34:605–611.10.1038/aps.2012.188
  • Janda E, Isidoro C, Carresi C, et al. Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol. Neurobiol. 2012;46:639–661.10.1007/s12035-012-8318-1
  • Jiang X, Overholtzer M, Thompson CB. Autophagy in cellular metabolism and cancer. J. Clin. Invest. 2015;125:47–54.10.1172/JCI73942
  • Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev. 2011;25:1999–2010.10.1101/gad.17558811
  • White E. The role for autophagy in cancer. J. Clin. Invest. 2015;125:42–46.10.1172/JCI73941
  • Pereira GJ, Tressoldi N, Hirata H, et al. Autophagy as a neuroprotective mechanism against 3-nitropropionic acid-induced murine astrocyte cell death. Neurochem. Res. 2013;38:2418–2426.10.1007/s11064-013-1154-5
  • Staats KA, Hernandez S, Schönefeldt S, et al. Rapamycin increases survival in ALS mice lacking mature lymphocytes. Mol. Neurodegener. 2013;8:31.10.1186/1750-1326-8-31
  • Ułamek-Kozioł M, Furmaga-Jabłońska W, Januszewski S, et al. Neuronal autophagy: self-eating or self-cannibalism in Alzheimer’s disease. Neurochem. Res. 2013;38:1769–1773.10.1007/s11064-013-1082-4
  • Wei PF, Zhang L, Nethi SK, et al. Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods. Biomaterials. 2014;35:899–907.10.1016/j.biomaterials.2013.10.024
  • Han HE, Kim TK, Son HJ, et al. Activation of autophagy pathway suppresses the expression of iNOS, IL6 and cell death of LPS-stimulated microglia cells. Biomol. Ther. (Seoul). 2013;21:21–28.10.4062/biomolther.2012.089
  • Ishikawa H, Nakamura Y, Jo J, et al. Gelatin nanospheres incorporating siRNA for controlled intracellular release. Biomaterials. 2012;33:9097–9104.10.1016/j.biomaterials.2012.08.032
  • Mahor S, Collin E, Dash BC, et al. Controlled release of plasmid DNA from hyaluronan nanoparticles. Curr. Drug Deliv. 2011;8:354–362.10.2174/156720111795768031
  • Devalliere J, Chang WG, Andrejecsk JW, et al. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J. 2014;28:908–922.10.1096/fj.13-238527
  • Lee SK, Tung CH. A fabricated siRNA nanoparticle for ultra-long gene silencing. Adv. Funct. Mater. 2013;23:3488–3493.10.1002/adfm.v23.28
  • Murakami H, Kobayashi M, Takeuchi H, et al. Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 1999;187:143–152.10.1016/S0378-5173(99)00187-8
  • Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell. 2004;15:1101–1111.
  • Kumar A, Jena PK, Behera S, et al. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine. 2010;6:64–69.
  • Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 2013;14:1629–1654.10.3390/ijms14011629
  • Gonçalves C, Pereira P, Gama M. Self-assembled hydrogel nanoparticles for drug delivery applications. Materials. 2010;3:1420–1460.10.3390/ma3021420
  • Tam YY, Chen S, Cullis PR. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics. 2013;5:498–507.10.3390/pharmaceutics5030498
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release. 2012;161:505–522.10.1016/j.jconrel.2012.01.043
  • Zhang N, Wardwell P, Bader R. Polysaccharide-based micelles for drug delivery. Pharmaceutics. 2013;5:329–352.10.3390/pharmaceutics5020329
  • Zeinali Sehrig F, Majidi S, Nikzamir N, et al. Magnetic nanoparticles as potential candidates for biomedical and biological applications. Artif. Cells Nanomed. Biotechnol. 2016;44:918–927.
  • Hanemann T, Szabó DV. Polymer-nanoparticle composites: from synthesis to modern applications. Materials. 2010;3:3468–3517.10.3390/ma3063468
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–1397.10.3390/polym3031377
  • Yameen B, Choi WI, Vilos C, et al. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release. 2014;190:485–499.10.1016/j.jconrel.2014.06.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.