298
Views
16
CrossRef citations to date
0
Altmetric
Articles

Comparison of small intestinal submucosa and polypropylene mesh for abdominal wall defect repair

, , , , , , , , & ORCID Icon show all
Pages 663-682 | Received 03 Oct 2017, Accepted 24 Jan 2018, Published online: 02 Feb 2018

References

  • Leppaniemi A, Tukiainen E. Reconstruction of complex abdominal wall defects. Scand J Surg. 2013;102(1):14–19. DOI:10.1177/145749691310200104. PubMed PMID: 23628631; eng.
  • Rosen MJ, Krpata DM, Ermlich B, et al. A 5-year clinical experience with single-staged repairs of infected and contaminated abdominal wall defects utilizing biologic mesh. Ann Surg. 2013 Jun;257(6):991–996. DOI:10.1097/SLA.0b013e3182849871. PubMed PMID: 23426340; eng.
  • Shahan CP, Stoikes NF, Webb DL, et al. Sutureless onlay hernia repair: a review of 97 patients. Surg Endosc. 2016 Aug;30(8):3256–3261. DOI:10.1007/s00464-015-4647-2. PubMed PMID: 26541726; eng.
  • Zhang R, Wang C, Chen Y, et al. The use of unilateral or bilateral external oblique myocutaneous flap in the reconstruction of lower abdominal wall or groin defects after malignant tumor resection. J Surg Oncol. 2014 Dec;110(8):930–934. DOI:10.1002/jso.23763. PubMed PMID: 25154885; eng.
  • Jensen KK, Backer V, Jorgensen LN. Abdominal wall reconstruction for large incisional hernia restores expiratory lung function. Surgery. 2017 Feb;161(2):517–524. DOI:10.1186/s12967-016-1066-710.1016/j.surg.2016.08.015. PubMed PMID: 27816206; eng.
  • Khansa I, Janis JE. Modern reconstructive techniques for abdominal wall defects after oncologic resection. J Surg Oncol. 2015 Apr;111(5):587–598. DOI:10.1002/jso.23824. PubMed PMID: 25371050.
  • Alsulaimy M, Punchai S, Ali FA, et al. The utility of diagnostic laparoscopy in post-bariatric surgery patients with chronic abdominal pain of unknown etiology. Obes Surg. 2017 Feb 22;27(8):1924–1928. DOI:10.1002/jbm.a.3605510.1007/s11695-017-2590-0. PubMed PMID: 28229315; eng.
  • Slater NJ, Bokkerink WJ, Konijn V, et al. Safety and durability of one-stage repair of abdominal wall defects with enteric fistulas. Ann Surg. 2015 Mar;261(3):553–557. DOI:10.1097/sla.0000000000000733. PubMed PMID: 24950273; eng.
  • Renard Y, Lardiere-Deguelte S, de Mestier L, et al. Management of large incisional hernias with loss of domain: a prospective series of patients prepared by progressive preoperative pneumoperitoneum. Surgery. 2016 Aug;160(2):426–435. DOI:10.1016/j.surg.2016.03.033. PubMed PMID: 27262533; eng.
  • Zetlitz E, Manook M, MacLeod A, et al. A new reconstructive technique for posterior vaginal wall defects, a case report. J Sex Med. 2013 Oct;10(10):2579–2581. DOI:10.1111/jsm.12056. PubMed PMID: 23347331; eng.
  • Tukiainen E, Leppaniemi A. Reconstruction of extensive abdominal wall defects with microvascular tensor fasciae latae flap. Br J Surg. 2011 Jun;98(6):880–884. DOI:10.1002/bjs.7489. PubMed PMID: 21480197.
  • Elstner KE, Read JW, Rodriguez-Acevedo O, et al. Preoperative chemical component relaxation using Botulinum toxin A: enabling laparoscopic repair of complex ventral hernia. Surg Endosc. 2017 Feb;31(2):761–768. DOI:10.1007/s00464-016-5030-7. PubMed PMID: 27351658; eng.
  • Christoudias G, Nunziata M. A simplified laparoscopic approach to ventral hernia repair: a new “finned” mesh configuration with defect closure. Surg Endosc. 2016 Jun;30(6):2632–2640. DOI:10.1007/s00464-015-4480-7. PubMed PMID: 26335069; eng.
  • Daes J, Dennis RJ. Endoscopic subcutaneous component separation as an adjunct to abdominal wall reconstruction. Surg Endosc. 2017 Feb;31(2):872–876. DOI:10.1007/s00464-016-5045-0. PubMed PMID: 27334963; eng.
  • Mitura K, Skolimowska-Rzewuska M, Garnysz K. Outcomes of bridging versus mesh augmentation in laparoscopic repair of small and medium midline ventral hernias. Surg Endosc. 2017 Jan;31(1):382–388. DOI:10.1007/s00464-016-4984-9. PubMed PMID: 27287902; eng.
  • Novitsky YW, Fayezizadeh M, Majumder A, et al. Outcomes of posterior component separation with transversus abdominis muscle release and synthetic mesh sublay reinforcement. Ann Surg. 2016;264(2):226–232. DOI:10.1097/sla.0000000000001673
  • Zhou B, Zhou X, Li Z, et al. Reconstruction of the lower abdominal region using bilateral pedicled anterolateral thigh flaps combined with poly-surgical mesh: a case report. Medicine. 2015 Dec;94(52):e2375. DOI:10.1097/md.0000000000002375. PubMed PMID: 26717382; PubMed Central PMCID: PMCPmc5291623. eng.
  • Melman L, Jenkins ED, Hamilton NA, et al. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair. Hernia. 2011 Aug;15(4):423–431. DOI:10.1007/s10029-011-0787-z. PubMed PMID: 21279663; PubMed Central PMCID: PMC3826829.
  • Cordero A, Hernandez-Gascon B, Pascual G, et al. Biaxial mechanical evaluation of absorbable and nonabsorbable synthetic surgical meshes used for hernia repair: physiological loads modify anisotropy response. Ann Biomed Eng. 2016 Jul;44(7):2181–2188. DOI:10.1007/s10439-015-1503-4. PubMed PMID: 26620778; eng.
  • Costa A, Naranjo JD, Turner NJ, et al. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect. Biomaterials. 2016 Nov;108:81–90. DOI: 10.1016/j.biomaterials.2016.08.053. PubMed PMID: 27619242; eng.
  • Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007 Sep;28(25):3587–3593. DOI:10.1016/j.biomaterials.2007.04.043. PubMed PMID: 17524477.
  • Ayala P, Caves J, Dai E, et al. Engineered composite fascia for stem cell therapy in tissue repair applications. Acta Biomater. 2015 Oct;26:1–12. DOI:10.1016/j.actbio.2015.08.012. PubMed PMID: 26283165; PubMed Central PMCID: PMCPmc4584209. eng.
  • Minardi S, Taraballi F, Wang X, et al. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model. Acta Biomater. 2017 Mar;50(50):165–177. DOI:10.1007/s11695-017-2590-010.1016/j.actbio.2016.11.032. PubMed PMID: 27872012; eng.
  • Skrobot J, Zair L, Ostrowski M, et al. New injectable elastomeric biomaterials for hernia repair and their biocompatibility. Biomaterials. 2016 Jan;75:182–192. DOI:10.1016/j.biomaterials.2015.10.037. PubMed PMID: 26513412; eng.
  • Zhang J, Hu ZQ, Turner NJ, et al. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Biomaterials. 2016 May;89:114–126. DOI:10.1016/j.biomaterials.2016.02.040. PubMed PMID: 26963901; eng.
  • McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res. 2003 Nov 1;67(2):637–640. DOI:10.1002/jbm.a.10144. PubMed PMID: 14566807; eng.
  • Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997 Dec 15;67(4):478–491. PubMed PMID: 9383707; eng.10.1002/(ISSN)1097-4644
  • Hodde JP, Record RD, Liang HA, et al. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8(1):11–24 PubMed PMID: 11409848; eng.10.3109/10623320109063154
  • Badylak SF, Lantz GC, Coffey A, et al. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res. 1989 Jul;47(1):74–80. PubMed PMID: 2739401; eng.10.1016/0022-4804(89)90050-4
  • Cheng EY, Kropp BP. Urologic tissue engineering with small-intestinal submucosa: potential clinical applications. World J Urol. 2000 Feb;18(1):26–30. DOI:10.1007/pl00007071. PubMed PMID: 10766040; eng
  • Pavcnik D, Uchida BT, Timmermans HA, et al. Percutaneous bioprosthetic venous valve: A long-term study in sheep. J Vasc Surg. 2002;35(3):598–602. DOI:10.1067/mva.2002.118825
  • Nuininga JE, van Moerkerk H, Hanssen A, et al. A rabbit model to tissue engineer the bladder. Biomaterials. 2004 Apr;25(9):1657–1661. PubMed PMID: 14697867; eng.10.1016/S0142-9612(03)00519-2
  • Jankowski R, Pruchnic R, Hiles M, et al. Advances toward tissue engineering for the treatment of stress urinary incontinence. Rev Urol. 2004 Spring;6(2):51–57. PubMed PMID: 16985578; PubMed Central PMCID: PMCPmc1472814. eng.
  • Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002 Apr;8(2):295–308. DOI:10.1089/107632702753725058. PubMed PMID: 12031118; eng.
  • Penttinen R, Gronroos JM. Mesh repair of common abdominal hernias: a review on experimental and clinical studies. Hernia. 2008 Aug;12(4):337–344. DOI:10.1007/s10029-008-0362-4. PubMed PMID: 18351432.
  • Cornwell KG, Landsman A, James KS. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg. 2009 Oct;26(4):507–523. DOI:10.1016/j.cpm.2009.08.001. PubMed PMID: 19778685.
  • Hiles M, Record Ritchie RD, Altizer AM. Are biologic grafts effective for hernia repair? Surg Innov. 2009;16(1):26–37. DOI:10.1177/1553350609331397
  • Pascual G, Sotomayor S, Rodriguez M, et al. Behaviour of a new composite mesh for the repair of full-thickness abdominal wall defects in a rabbit model. PLoS ONE. 2013;8(11):e80647. DOI:10.1371/journal.pone.0080647. PubMed PMID: 24236192; PubMed Central PMCID: PMC3827430.
  • Luo JC, Chen W, Chen XH, et al. A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials. 2011 Jan;32(3):706–713. DOI:10.1016/j.biomaterials.2010.09.017. PubMed PMID: 20933271; eng.
  • Walker AP, Henderson J, Condon RE. Double-layer prostheses for repair of abdominal wall defects in a rabbit model. J Surg Res. 1993 Jul;55(1):32–37. DOI:10.1006/jsre.1993.1104. PubMed PMID: 8412079; eng.
  • Mori N, Takano K, Miyake T, et al. A comparison of prosthetic materials used to repair abdominal wall defects. Pediatr Surg Int. 1998 Sep;13(7):487–490. DOI:10.1007/s003830050379. PubMed PMID: 9716675; eng.
  • Junge K, Klinge U, Prescher A, et al. Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia. 2001 Sep;5(3):113–118. PubMed PMID: 11759794; eng.
  • Konstantinovic ML, Lagae P, Zheng F, et al. Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG. 2005;112(11):1554–1560. DOI:10.1111/j.1471-0528.2005.00688.x.
  • Geesala R, Bar N, Dhoke NR, et al. Porous polymer scaffold for on-site delivery of stem cells – protects from oxidative stress and potentiates wound tissue repair. Biomaterials. 2016;77:1–13. DOI:10.1016/j.biomaterials.2015.11.003
  • Fangkrathok N, Junlatat J, Sripanidkulchai B. In vivo and in vitro anti-inflammatory activity of Lentinus polychrous extract. J Ethnopharmacol. 2013 Jun 3;147(3):631–637. DOI:10.1016/j.jep.2013.03.055. PubMed PMID: 23542041; eng.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. DOI:10.1006/meth.2001.1262
  • Tang R, Liu Z, Feng X, et al. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair. Int J Nanomed. 2014;1275. DOI:10.2147/ijn.s58626
  • Badylak S, Kokini K, Tullius B, et al. Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res. 2002 Apr;103(2):190–202. DOI:10.1006/jsre.2001.6349. PubMed PMID: 11922734; eng.
  • Burugapalli K, Pandit A. Characterization of tissue response and in vivo degradation of cholecyst-derived extracellular matrix. Biomacromolecules. 2007 Nov;8(11):3439–3451. DOI:10.1021/bm700560k. PubMed PMID: 17918995; eng.
  • Liu Z, Tang R, Zhou Z, et al. Comparison of two porcine-derived materials for repairing abdominal wall defects in rats. PLoS ONE. 2011;6(5):e20520. DOI:10.1371/journal.pone.0020520. PubMed PMID: 21637777; PubMed Central PMCID: PMCPmc3102734. eng.
  • Huber A, Boruch AV, Nieponice A, et al. Histopathologic host response to polypropylene-based surgical mesh materials in a rat abdominal wall defect model. J Biomed Mater Res Part B. 2012 Apr;100(3):709–717. DOI:10.1002/jbm.b.32503. PubMed PMID: 22128072.
  • Ma J, Sahoo S, Baker AR, et al. Investigating muscle regeneration with a dermis/small intestinal submucosa scaffold in a rat full-thickness abdominal wall defect model. J Biomed Mater Res Part B. 2015 Feb;103(2):355–364. DOI:10.1002/jbm.b.33166. PubMed PMID: 24889422.
  • Greca FH, de Paula JB, Biondo-Simoes ML, et al. The influence of differing pore sizes on the biocompatibility of two polypropylene meshes in the repair of abdominal defects. Experimental study in dogs. Hernia. 2001 Jun;5(2):59–64. PubMed PMID: 11505649; eng.
  • Schug-Pass C, Tamme C, Tannapfel A, et al. A lightweight polypropylene mesh (TiMesh) for laparoscopic intraperitoneal repair of abdominal wall hernias: comparison of biocompatibility with the DualMesh in an experimental study using the porcine model. Surg Endosc. 2006 Mar;20(3):402–409. DOI:10.1007/s00464-004-8277-3. PubMed PMID: 16432656.
  • Chatzimavroudis G, Kalaitzis S, Voloudakis N, et al. Evaluation of four mesh fixation methods in an experimental model of ventral hernia repair. J Surg Res. 2017;212:253–259. DOI:10.1016/j.jss.2017.01.013
  • Ayubi FS, Armstrong PJ, Mattia MS, et al. Abdominal wall hernia repair: a comparison of Permacol and Surgisis grafts in a rat hernia model. Hernia. 2008 Aug;12(4):373–378. DOI:10.1007/s10029-008-0359-z. PubMed PMID: 18330666.
  • Lukasiewicz A, Skopinska-Wisniewska J, Marszalek A, et al. Collagen/polypropylene composite mesh biocompatibility in abdominal wall reconstruction. Plast Reconstr Surg. 2013;131(5):731e–740e. DOI:10.1097/PRS.0b013e3182865d2c
  • Peeters E, van Barneveld KW, Schreinemacher MH, et al. One-year outcome of biological and synthetic bioabsorbable meshes for augmentation of large abdominal wall defects in a rabbit model. J Surg Res. 2013 Apr;180(2):274–283. DOI:10.1016/j.jss.2013.01.025. PubMed PMID: 23481559.
  • Shi L, Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burns Trauma. 2013;3(4):173–179. PubMed PMID: 24273692; PubMed Central PMCID: PMCPmc3828736. eng.
  • Chen JW, Chen YH, Lin SJ. Long-term exposure to oxidized low-density lipoprotein enhances tumor necrosis factor-alpha-stimulated endothelial adhesiveness of monocytes by activating superoxide generation and redox-sensitive pathways. Free Radical Biol Med. 2006 Mar 1;40(5):817–826. DOI:10.1016/j.freeradbiomed.2005.10.037. PubMed PMID: 16520234; eng.
  • Wilson MR, Choudhury S, Takata M. Pulmonary inflammation induced by high-stretch ventilation is mediated by tumor necrosis factor signaling in mice. Am J Physiol-Lung Cell Mol Physiol. 2005 Apr;288(4):L599–L607. DOI:10.1152/ajplung.00304.2004. PubMed PMID: 15489373; eng.
  • Campbell IK, Roberts LJ, Wicks IP. Molecular targets in immune-mediated diseases: the case of tumour necrosis factor and rheumatoid arthritis. Immunol Cell Biol. 2003 Oct;81(5):354–366. DOI:10.1046/j.0818-9641.2003.01185.x. PubMed PMID: 12969323; eng.
  • Spielmann S, Kerner T, Ahlers O, et al. Early detection of increased tumour necrosis factor alpha (TNFalpha) and soluble TNF receptor protein plasma levels after trauma reveals associations with the clinical course. Acta Anaesthesiol Scand. 2001 Mar;45(3):364–370. PubMed PMID: 11207475; eng.10.1034/j.1399-6576.2001.045003364.x
  • Murano M, Maemura K, Hirata I, et al. Therapeutic effect of intracolonically administered nuclear factor kappa B (p65) antisense oligonucleotide on mouse dextran sulphate sodium (DSS)-induced colitis. Clin Exp Immunol. 2000 Apr;120(1):51–58. PubMed PMID: 10759763; PubMed Central PMCID: PMCPmc1905625. eng.10.1046/j.1365-2249.2000.01183.x
  • Reinhart K, Menges T, Gardlund B, et al. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: the RAMSES study. Crit Care Med. 2001 Apr;29(4):765–769. PubMed PMID: 11373466; eng10.1097/00003246-200104000-00015
  • Cavallo JA, Greco SC, Liu J, et al. Remodeling characteristics and biomechanical properties of a crosslinked versus a non-crosslinked porcine dermis scaffolds in a porcine model of ventral hernia repair. Hernia. 2015 Apr;19(2):207–218. DOI:10.1007/s10029-013-1070-2. PubMed PMID: 23483265; PubMed Central PMCID: PMC3883946.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.