302
Views
23
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy

, , , , , & show all
Pages 1265-1286 | Received 24 Jan 2018, Accepted 16 Mar 2018, Published online: 09 Apr 2018

References

  • Yan J, Ye Z, Chen M, et al. Fine tuning micellar core-forming block of poly (ethylene glycol)-block-poly (ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Biomacromol. 2011;12(7):2562–2572.10.1021/bm200375x
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.10.1038/nmat3776
  • Wang Z, Ma G, Zhang J, et al. Development of zwitterionic polymer-based doxorubicin conjugates: Tuning the surface charge to prolong the circulation and reduce toxicity. Langmuir. 2014;30(13):3764–3774.10.1021/la5000765
  • Capretto L, Mazzitelli S, Colombo G, et al. Production of polymeric micelles by microfluidic technology for combined drug delivery: application to osteogenic differentiation of human periodontal ligament mesenchymal stem cells (hPDLSCs). Int J Pharm. 2013;440(2):195–206.10.1016/j.ijpharm.2012.07.057
  • Liang X, Liu F, Kozlovskaya V, et al. Thermoresponsive micelles from double LCST-poly (3-methyl-N-vinylcaprolactam) block copolymers for cancer therapy. ACS Macro Lett. 2015;4(3):308–311.10.1021/mz500832a
  • Wu Z, Cai M, Xie X, et al. The effect of architecture/composition on the pH sensitive micelle properties and in vivo study of curcuminin-loaded micelles containing sulfobetaines. RSC Adv. 2015;5(129):106989–107000.10.1039/C5RA20847E
  • Salehi R, Nowruzi K, Salehi S, et al. Smart poly (N-isopropylacrylamide)-block-poly (L-Lactide) nanoparticles for prolonged release of Naltrexone. Int J Polym Mater. 2013;62(13):686–694.10.1080/00914037.2013.769227
  • Bains A, Wulff JE, Moffitt MG. Microfluidic synthesis of dye-loaded polycaprolactone-block-poly (ethylene oxide) nanoparticles: insights into flow-directed loading and in vitro release for drug delivery. J Colloid Interface Sci.. 2016;475:136–148.10.1016/j.jcis.2016.04.010
  • Chi W, Liu S, Yang J, et al. Evaluation of the effects of amphiphilic oligomers in PEI based ternary complexes on the improvement of pDNA delivery. J Mater Chem B. 2014;2(33):5387–5396.10.1039/C4TB00807C
  • Ferrari R, Colombo C, Dossi M, et al. Tunable PLGA-based nanoparticles synthesized through free-radical polymerization. Macromol Mater Eng. 2013;298(7):730–739.10.1002/mame.v298.7
  • Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Controlled Release. 2010;143(2):258–264.10.1016/j.jconrel.2009.12.029
  • Callegari A, Cosnier S, Marcaccio M, et al. Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. J Mater Chem. 2004;14(5):807–810.10.1039/B316806A
  • Lee SJ, Han BR, Park SY, et al. Sol–gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution. J Polym Sci, Part A: Polym Chem. 2006;44(2):888–899.10.1002/(ISSN)1099-0518
  • Yu Y, Ferrari R, Lattuada M, et al. PLA-based nanoparticles with tunable hydrophobicity and degradation kinetics. J Polym Sci, Part A: Polym Chem. 2012;50(24):5191–5200.10.1002/pola.26370
  • Sun P, Zhang Y, Shi L, et al. Thermosensitive nanoparticles self-assembled from PCL-b-PEO-b-PNIPAAm triblock copolymers and their potential for controlled drug release. Macromol Biosci. 2010;10(6):621–631.10.1002/mabi.200900434
  • Salehi R, Davaran S, Rashidi MR, et al. Thermosensitive nanoparticles prepared from poly (N-isopropylacrylamide-acrylamide-vinilpyrrolidone) and its blend with poly (lactide-co-glycolide) for efficient drug delivery system. J Appl Polym Sci. 2009;111(4):1905–1910.10.1002/app.v111:4
  • Salehi R, Nowruzi K, Entezami A, et al. Thermosensitive polylactide-glycolide delivery systems for treatment of narcotic addictions. Polym Adv Technol. 2009;20(4):416–422.10.1002/pat.v20:4
  • Le Hellaye M, Lefay C, Davis TP, et al. Simultaneous reversible addition fragmentation chain transfer and ring-opening polymerization. J Polym Sci, Part A: Polym Chem. 2008;46(9):3058–3067.10.1002/(ISSN)1099-0518
  • Deng G, Ma D, Xu Z. Synthesis of ABC-type miktoarm star polymers by “click” chemistry. Eur Polymer J. 2007;43(4):1179–1187.10.1016/j.eurpolymj.2007.01.034
  • Ichihara H, Motomura M, Matsumoto Y. Negatively charged cell membranes-targeted highly selective chemotherapy with cationic hybrid liposomes against colorectal cancer. In Vitro and in Vivo. J Carcinog  Mutagen. 2016;7:267.
  • Chen B, Le W, Wang Y, et al. Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics. 2016;6(11):1887.10.7150/thno.16358
  • Gakhar G, Liu H, Shen R, et al. Anti-tumor effect of novel cationic biomaterials in prostate cancer. Anticancer Res. 2014;34(8):3981–3989.
  • Tabujew I, Peneva K. Functionalization of cationic polymers for drug delivery applications; 2014.
  • Graham JB. Co-delivery of cationic polymers and adenovirus in immunotherapy of prostate cancer. Lowa: The University of Iowa; 2010.
  • Salehi R, Alizadeh E, Kafil HS, et al. pH-Controlled multiple-drug delivery by a novel antibacterial nanocomposite for combination therapy. RSC Adv. 2015;5(128):105678–105691.
  • Rahimi M, Safa KD, Alizadeh E, et al. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J Chem. 2017;41(8):3177–3189.10.1039/C6NJ04107H
  • Cho H, Lai TC, Tomoda K, et al. Polymeric micelles for multi-drug delivery in cancer. AAPS PharmSciTech. 2015;16(1):10–20.10.1208/s12249-014-0251-3
  • Thipparaboina R, Chavan RB, Kumar D, et al. Micellar carriers for the delivery of multiple therapeutic agents. Colloids Surf, B. 2015;135:291–308.10.1016/j.colsurfb.2015.07.046
  • Rasouli S, Davaran S, Rasouli F, et al. Positively charged functionalized silica nanoparticles as nontoxic carriers for triggered anticancer drug release. Des Monomers Polym. 2014;17(3):227–237.10.1080/15685551.2013.840475
  • Rahimi M, Safa KD, Salehi R. Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polym Chem. 2017;8(47):7333–7350.10.1039/C7PY01701D
  • Islam MT, Majoros IJ, Baker JR. HPLC analysis of PAMAM dendrimer based multifunctional devices. J Chromatogr B. 2005;822(1):21–26.10.1016/j.jchromb.2005.05.001
  • Zhu L, Huo Z, Wang L, et al. Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Int J Pharm. 2009;370(1):136–143.10.1016/j.ijpharm.2008.12.003
  • Uchiyama M, Matsumoto T, Matsumoto T, et al. Simple and sensitive HPLC method for the fluorometric determination of methotrexate and its major metabolites in human plasma by post-column photochemical reaction. Biomed Chromatogr. 2012;26(1):76–80.10.1002/bmc.v26.1
  • Czaplińska M, Czepas J, Gwoździński K. Structure, antioxidative and anticancer properties of flavonoids. Postepy Biochem. 2012;58(3):235–244.
  • Hemeida R, Mohafez O. Curcumin attenuates methotraxate-induced hepatic oxidative damage in rats. J Egypt Nat Cancer Inst. 2008;20(2):141–148.
  • Ueki M, Ueno M, Morishita J, et al. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J Biosci Bioeng. 2013;115(5):547–551.10.1016/j.jbiosc.2012.11.007
  • Nguyen T, Tran E, Nguyen T, et al. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis. 2004;25(5):647–659.
  • Sabzichi M, Mohammadian J, Bazzaz R, et al. Chrysin loaded nanostructured lipid carriers (NLCs) triggers apoptosis in MCF-7 cancer cells by inhibiting the Nrf2 pathway. Process Biochem. 2017;60:84–91.
  • Anari E, Akbarzadeh A, Zarghami N. Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif Cells, nanomed Biotechnol. 2016;44(6):1410–1416.
  • Choi J-A, Kim J-Y, Lee J-Y, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol. 2001;19(4):837–844.
  • Yoshida M, Sakai T, Hosokawa N, et al. The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Lett. 1990;260(1):10–13.10.1016/0014-5793(90)80053-L
  • Vijayababu M, Kanagaraj P, Arunkumar A, et al. Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. J Cancer Res Clin Oncol. 2005;131(11):765–771.10.1007/s00432-005-0005-4
  • Xie Z-H, Quan M-F, Liu F, et al. 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells. BMC Cancer. 2011;11(1):322.10.1186/1471-2407-11-322
  • Pushpavalli G, Veeramani C, Pugalendi KV. Influence of chrysin on hepatic marker enzymes and lipid profile against d-galactosamine-induced hepatotoxicity rats. Food Chem Toxicol.. 2010;48(6):1654–1659.10.1016/j.fct.2010.03.040
  • Pushpavalli G, Kalaiarasi P, Veeramani C, et al. Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats. Eur J Pharmacol. 2010;631(1):36–41.10.1016/j.ejphar.2009.12.031
  • Mantawy EM, El-Bakly WM, Esmat A, et al. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol. 2014;728:107–118.10.1016/j.ejphar.2014.01.065
  • Mohammadian F, Abhari A, Dariushnejad H, et al. Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iran J Cancer Prev. 2016;9(4):4190.
  • Davaran S, Ghamkhari A, Alizadeh E, et al. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis”,schizophrenic” micellization, and its performance as an anticancer drug delivery nanosystem. J Colloid Interface Sci. 2017;488:282–293.10.1016/j.jcis.2016.11.002
  • Dong P, Wang X, Gu Y, et al. Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf, A. 2010;358(1):128–134.10.1016/j.colsurfa.2010.01.037
  • Peng C-L, Shieh M-J, Tsai M-H, et al. Self-assembled star-shaped chlorin-core poly (ɛ-caprolactone)–poly (ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials. 2008;29(26):3599–3608.10.1016/j.biomaterials.2008.05.018
  • Endres TK, Beck-Broichsitter M, Samsonova O, et al. Self-assembled biodegradable amphiphilic PEG–PCL–lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials. 2011;32(30):7721–7731.10.1016/j.biomaterials.2011.06.064
  • Zhang L, He Y, Ma G, et al. Paclitaxel-loaded polymeric micelles based on poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomed Nanotechnol Biol Med. 2012;8(6):925–934.
  • Salehi R, Rasouli S, Hamishehkar H. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharm. 2015;487(1–2):274–284.10.1016/j.ijpharm.2015.04.051
  • Helmlinger G, Yuan F, Dellian M, et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3(2):177.10.1038/nm0297-177
  • Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Controlled Release. 2005;103(2):405–418.10.1016/j.jconrel.2004.12.018
  • Liu Y, Cao X, Luo M, et al. Self-assembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J Colloid Interface Sci. 2009;329(2):244–252.10.1016/j.jcis.2008.10.007
  • Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Can Res. 1989;49(16):4373–4384.
  • Zhang L, Guo R, Yang M, et al. Thermo and pH dual‐responsive nanoparticles for anti‐cancer drug delivery. Adv Mater. 2007;19(19):2988–2992.10.1002/(ISSN)1521-4095
  • Rasouli S, Davaran S, Rasouli F, et al. Synthesis, characterization and pH-controllable methotrexate release from biocompatible polymer/silica nanocomposite for anticancer drug delivery. Drug Delivery. 2014;21(3):155–163.10.3109/10717544.2013.838714
  • Salehi R, Hamishehkar H, Eskandani M, et al. Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs. J Drug Target. 2014;22(4):327–342.10.3109/1061186X.2013.876645

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.