1,865
Views
86
CrossRef citations to date
0
Altmetric
Review Articles

Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review

, , , , &
Pages 695-712 | Received 02 Oct 2018, Accepted 07 Apr 2019, Published online: 23 Apr 2019

References

  • Biron M. Chapter 2 – The plastics industry: economic overview. In: Biron M, editor. Thermoplastics and thermoplastic composites. 3rd ed. Norwich, NY: William Andrew Publishing; 2018. p. 31–132.
  • Strong AB, Strong B. Plastics: materials and processing. London: Pearson; 2000.
  • Koller M, Maršálek L, de Sousa Dias MM. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017;37:24–38.
  • Urtuvia V, Villegas P, González M, et al. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol. 2014;70:208–213.
  • Kourmentza C, Plácido J, Venetsaneas N, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017;4:55.
  • Rai R. Biosynthesis of polyhydroxyalkanoates and its medical applications [dissertation]. London: University of Westminster; 2010.
  • Campos E, Branquinho J, Carreira AS, et al. Designing polymeric microparticles for biomedical and industrial applications. Eur Polym J. 2013;49:2005–2021.
  • Keshavarz T, Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol. 2010;13:321–326.
  • Amache R, Sukan A, Safari M, et al. Advances in PHAs production. Chem Eng Trans. 2013;32:931–936.
  • Visakh P. Polyhydroxyalkanoates (PHAs), their Blends. Compos Nanocompos. 2014; 30:1.
  • Martínez V, Herencias C, Jurkevitch E, et al. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep. 2016;6:24381.
  • Marchessault RH, Yu G. Crystallization and material properties of polyhydroxyalkanoates PHAs. In Biopolymers Online: Biology• Chemistry• Biotechnology• Applications. Hoboken, NJ: Wiley-Blackwell; 2005. p. 526.
  • Goh L-K, Purama RK, Sudesh K. Enhancement of stress tolerance in the polyhydroxyalkanoate producers without mobilization of the accumulated granules. Appl Biochem Biotechnol. 2014;172:1585–1598.
  • Lee K-M, Gilmore DF. Formulation and process modeling of biopolymer (polyhydroxyalkanoates: PHAs) production from industrial wastes by novel crossed experimental design. Process Biochem. 2005;140:229–246.
  • Xie C-H, Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol. 2005;55:2419–2425.
  • Doi Y. Microbial polyesters. New York: VCH; 1990.
  • Chee J-Y, Yoga S-S, Lau N-S, et al. Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. Curr Res Technol Educ Topics Appl Microbiol Microb Biotechnol. 2010;2:1395–1404.
  • Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990;54:450–472.
  • Loo CY, Polyhydroxyalkanoates SK. bio-based microbial plastics and their properties. Malay Polym J. 2007;2:31–57.
  • Bugnicourt E, Cinelli P, Lazzeri A, et al. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett. 2014;8:791–808.
  • Tan G-Y, Chen C-L, Li L, et al. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 2014;6:706–754.
  • Zaharia C, Vasile E, Galateanu B, et al. Bacterial cellulose-polyhydroxyalkanoates composites synthesis, physico-chemical characterization and biological evaluation for tissue engineering. Mater Plast. 2014;51:1–5.
  • Wang Y, Yin J, Chen G-Q. Polyhydroxyalkanoates, challenges and opportunities. Current Opinion in Biotechnology. 2014;30:59–65.
  • Zhu C, Chen Q. Polyhydroxyalkanoate-based biomaterials for applications in biomedical engineering. Adv Healthc Mater. 2014;1:439–464.
  • Ke Y, Zhang X, Ramakrishna S, et al. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. Mater Sci Eng C Mater Biol Appl. 2017;70:1107–1119.
  • Luef K, Stelzer F, Wiesbrock F. Poly (hydroxy alkanoate) s in medical applications. ChemBiochemEngQ. 2015;29:287–297.
  • Yasotha K, Aroua M, Ramachandran K, et al. Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochem Eng J. 2006;30:260–268.
  • Satoh H, Mino T, Matsuo T. PHA production by activated sludge. Int J Biol Macromol. 1999;25:105–109.
  • Chua AS, Takabatake H, Satoh H, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Res. 2003;37:3602–3611.
  • Reinecke F, SteinbÜChel A. A. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol. 2009;16:91–108.
  • Laycock B, Halley P, Pratt S, et al. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci. 2013;38:536–583.
  • Rey D. Nanoparticle-coated poly (3-hydroxybutyrate) granules for biomedical applications. [dissertation]: Faculty of the Graduate School of Cornell University; 2012.
  • Chen G-Q. A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev. 2009;38:2434–2446.
  • Ojumu T, Yu J, Solomon B. Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. Afr J Biotechnol. 2004;3:18–24.
  • Khanna S, Srivastava AK. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 2005;40:607–619.
  • Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018;23:362.
  • Butt FI, Muhammad N, Hamid A, et al. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications–review. Int J Biol Macromol. 2018; 120:1294–1305.
  • Tanadchangsaeng NS. Chemomechanical properties and degradability of polyhydroxyalkanoates: a review. Bull Health Sci Technol. 2014;12:9–21.
  • Rai R, Keshavarz T, Roether J, et al. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep. 2011;72:29–47.
  • Bear MM, Mallarde D, Langlois V, et al. Natural and artificial functionalized biopolyesters. II. Medium-chain length polyhydroxyoctanoates from Pseudomonas strains. J Environ Polym Degrad. 1999;7:179–184.
  • Deng Y, Zhao K, Zhang X-F, et al. Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 2002;23:4049–4056.
  • Williams SF, Martin DP, Horowitz DM, et al. PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol. 1999;25:111–121.
  • Hazer B. Amphiphilic poly (3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci. 2010; 2010:1–8.
  • Niaounakis M. Definitions of terms and types of biopolymers. In Biopolymers: applications and trends. Reino Unido, William Andrew Publishing; 2015. p. 1–90.
  • Kalia VC. Biotechnological applications of polyhydroxyalkanoates. Berlin: Springer; 2019.
  • Leong YK, Show PL, Ooi CW, et al. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol. 2014;180:52–65.
  • Verlinden RA, Hill DJ, Kenward M, et al. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol. 2007;102:1437–1449.
  • López-Cuellar M, Alba-Flores J, Rodríguez JG, et al. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol. 2011;48:74–80.
  • Gopi S, Kontopoulou M, Ramsay BA, et al. Manipulating the structure of medium-chain-length polyhydroxyalkanoate (MCL-PHA) to enhance thermal properties and crystallization kinetics. Int J Biol Macromol. 2018;119:1248–1255.
  • Cerrone F, Choudhari SK, Davis R, et al. Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Appl Microbiol Biotechnol. 2014;98:611–620.
  • Wecker P, Moppert X, Simon-Colin C, et al. Discovery of a mcl-PHA with unexpected biotechnical properties: the marine environment of French Polynesia as a source for PHA-producing bacteria. Amb Express. 2015;5:74.
  • Poblete-Castro I, Binger D, Oehlert R, et al. Comparison of mcl-Poly (3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions. BMC Biotechnol. 2014;14:962.
  • Muhr A, Rechberger EM, Salerno A, et al. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol. 2013;165:45–51.
  • Sharma P, Munir R, Blunt W, et al. Synthesis and physical properties of polyhydroxyalkanoate polymers with different monomer compositions by recombinant Pseudomonas putida LS46 expressing a novel PHA SYNTHASE (PhaC1 16) enzyme. Appl Sci. 2017;7:242.
  • Tsuge T. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng. 2002;94:579–584.
  • Tanadchangsaeng N, Kitagawa A, Yamamoto T, et al. Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate. Biomacromolecules 2009;10:2866–2874.
  • Raza ZA, Riaz S, Banat IM. Polyhydroxyalkanoates: properties and chemical modification approaches for their functionalization. Biotechnol Progress. 2018;34:29–41.
  • Kim G, Bang K, Kim Y, et al. Preparation and characterization of native poly (3-hydroxybutyrate) microspheres from Ralstonia eutropha. Biotechnol Lett. 2000;22:1487–1492.
  • Padermshoke A, Katsumoto Y, Sato H, et al. Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy. Polymer 2004;45:6547–6554.
  • Xiang H-X, Zabihi F, Zhang X-Z, et al. The crystallization, melting behaviors and thermal stability of cross-linked poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Octavinyloctasilasesquioxane. Chin J Polym Sci. 2018;36:1353–1360.
  • Francis L, Meng D, Locke IC, et al. Novel poly (3‐hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications. Polym Int. 2016;65:661–674.
  • Możejko-Ciesielska J, Kiewisz R. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res. 2016;192:271–282.
  • Volova T, Vinogradova O, Zhila N, et al. Physicochemical properties of multicomponent polyhydroxyalkanoates: novel aspects. Polym Sci Ser A. 2017;59:98–106.
  • Li Z, Yang J. Loh XJ. Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. 2016;8:265.
  • Xiang H, Chen W, Chen Z, et al. Significant accelerated crystallization of long chain branched poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with high nucleation temperature under fast cooling rate. Compos Sci Technol. 2017;142:207–213.
  • Xiang H, Chen Z, Zheng N, et al. Melt-spun microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers with enhanced toughness: synergistic effect of heterogeneous nucleation, long-chain branching and drawing process. Int J Biol Macromol. 2019;122:1136–1143.
  • Chen Z-y, Xiang H-X, Z-X H, et al. Enhanced mechanical properties of melt-spun bio-based PHBV fibers: effect of heterogeneous nucleation and drawing process. Acta Polym Sin. 2017;7:1121–1129.
  • Anjum A, Zuber M, Zia KM, et al. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol. 2016;89:161–174.
  • Meng D-C, Chen G-Q. Synthetic biology of polyhydroxyalkanoates (PHA). In Synthetic biology–metabolic engineering. Berlin: Springer; 2017. p. 147–174.
  • Sanhueza C, Acevedo F, Rocha S, et al. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol. 2019 ;124:102–110. 2019/03/01/
  • Zhang J, Shishatskaya EI, Volova TG, et al. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater Sci Eng C Mater Biol Appl. 2018;86:144–150.
  • Sudesh K. Polyhydroxyalkanoates from palm oil: biodegradable plastics. Berlin: Springer Science & Business Media; 2012.
  • Liao Q. Biodegradable poly (hydroxyalkanoates): melt, solid, and foam. Stanford, CA: Stanford University; 2010.
  • Zhao K, Deng Y, Chun Chen J, et al. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 2003;24:1041–1045. 2003/03/01/
  • Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29(20):2941–2953.
  • Degeratu C, Mabilleau G, Aguado E, et al. Polyhydroxyalkanoate (PHBV) fibers obtained by a wet spinning method: good in vitro cytocompatibility but absence of in vivo biocompatibility when used as a bone graft. Morphologie 2019.
  • Kovalcik A, Obruca S, Fritz I, et al. Polyhydroxyalkanoates: their importance and future. BioResources 2019;14:2468–2471.
  • Akaraonye E, Keshavarz T, Roy I. Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol. 2010;85:732–743.
  • Hazer B, Steinbüchel A. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol. 2007;74:1–12.
  • Brandi H, Bachofen R, Mayer J, et al. Degradation and applications of polyhydroxyalkanoates. Can J Microbiol. 1995;41:143–153.
  • Shrivastav A, Kim H-Y, Kim Y-R. Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int. 2013;2013:1–8.
  • Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev. 2001;53:5–21.
  • Koller M, Hesse P, Bona R, et al. Potential of various archae‐and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci. 2007;7:218–226.
  • Qu X-H, Wu Q, Liang J, et al. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials 2006;27:2944–2950.
  • Jendrossek D, Handrick R. Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol. 2002;56:403–432.
  • Dai Z-W, Zou X-H, Chen G-Q, et al. (3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 2009;30:3075–3083.
  • Volova TG, Boyandin AN, Vasiliev AD, et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab. 2010;95:2350–2359.
  • Freier T. Biopolyesters in tissue engineering applications. In Polymers for Regenerative Medicine. Berlin: Springer; 2006;vol. 203. p. 1–61.
  • Brigham CJ, Sinskey AJ. Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind. 2012;1:52.
  • Numata K, Abe H, Iwata T. Biodegradability of poly (hydroxyalkanoate) materials. Materials 2009;2:1104–1126.
  • Kumagai Y, Doi Y. Enzymatic degradation and morphologies of binary blends of microbial poly (3-hydroxy butyrate) with poly (ε-caprolactone), poly (1, 4-butylene adipate and poly (vinyl acetate). Polym Degrad Stabil. 1992;36:241–248.
  • Chen G-Q, Zhang J, Wang Y. White Biotechnology for biopolymers: hydroxyalkanoates and polyhydroxyalkanoates: production and applications. In Industrial Biorefineries & White Biotechnology. Amsterdam: Elsevier; 2015. p. 555–574.
  • Valappil SP, Misra SK, Boccaccini AR, et al. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices. 2006;3:853–868.
  • Ray S, Kalia VC. Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol. 2017;57:261–269.
  • Sodian R, Hoerstrup SP, Sperling JS, et al. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 2000;102:Iii-22–Iii-29.
  • Nehrer S, Breinan HA, Ramappa A, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997;38:95–104.
  • Williams SF, Martin DP. Applications of polyhydroxyalkanoates (PHA) in medicine and pharmacy. Biopolymers online: biology• chemistry• biotechnology• applications. Weinheim: Wiley VCH; 2005. p. 4.
  • Dinjaski N, Fernández-Gutiérrez M, Selvam S, et al. PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus. Biomaterials 2014;35:14–24.
  • O'Connor S, Szwej E, Nikodinovic-Runic J, et al. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 2013;34:2710–2718.
  • Chen G-Q. Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In Plastics from bacteria. Berlin: Springer; 2010. p. 17–37.
  • Das S, Dowding JM, Klump KE, et al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 2013;8:1483–1508.
  • Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J. 2003;16:97–105.
  • Ljungberg C, Johansson‐Ruden G, et al. Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair. Microsurgery: Official Journal of the International Microsurgical Society and the European Federation of Societies for. Microsurgery 1999;19:259–264.
  • Wang L, Wang Z-H, Shen C-Y, et al. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 2010;31:1691–1698.
  • Novikova LN, Pettersson J, Brohlin M, et al. Biodegradable poly-β-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials 2008;29:1198–1206.
  • Chen G-Q, Wang Y. Medical applications of biopolyesters polyhydroxyalkanoates. Chin J Polym Sci. 2013;31:719–736.
  • Williams JK, Yoo JJ, Atala A. Regenerative medicine approaches for tissue engineered heart valves. In Principles of regenerative medicine. Amsterdam: Elsevier; 2019. p. 1041–1058.
  • Vigneswari S, Chai J, Shantini K, et al. Designing novel interfaces via surface functionalization of short-chain-length polyhydroxyalkanoates. Adv Polym Technol. 2019;2019:1–15.
  • Pacheco DP, Amaral MH, Reis RL, et al. Development of an injectable PHBV microparticles-GG hydrogel hybrid system for regenerative medicine. Int J Pharm. 2015;478:398–408.
  • Choiniere P. Development of polyhydroxyalkanoate nanoparticles for cancer therapy. 2015;1–43.
  • Jain R, Kosta S, Tiwari A. Polyhydroxyalkanoates: important in cancer and other drug discovery systems. Indian J Cancer. 2010;47:87.
  • Koller M, Hesse P, Bona R, et al. Biosynthesis of high quality polyhydroxyalkanoate co‐and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol Symp. 2007;253:33–39.
  • Kalia VC, Ray S, Patel SK, et al. Applications of polyhydroxyalkanoates and their metabolites as drug carriers. In Biotechnological applications of polyhydroxyalkanoates. Berlin: Springer; 2019. p. 35–48.
  • Papaneophytou C, Katsipis G, Halevas E, et al. Polyhydroxyalkanoates applications in drug carriers. In Biotechnological applications of polyhydroxyalkanoates. Berlin: Springer; 2019. p.77–124.
  • Li Z, Lim J. Biodegradable polyhydroxyalkanoates nanocarriers for drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications. Amsterdam: Elsevier; 2018; vol. 1. p. 607–634.
  • Iqbal HM, Keshavarz T. Bioinspired polymeric carriers for drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications. Amsterdam: Elsevier; 2018; vol. 1. p. 377–404.
  • Pramual S, Assavanig A, Bergkvist M, et al. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. J Mater Sci Mater Med. 2016;27:40.
  • Agirtas S, Ion R-M, Bekaroglu O. Spectral study of the supramolecular assemblies porphyrins–phthalocyanines. Mater Sci Eng C. 1999;7:105–110.
  • Susan M, Baldea I, Senila S, et al. Photodamaging effects of porphyrins and chitosan on primary human keratinocytes and carcinoma cell cultures. Int J Dermatol. 2011;50:280–286.
  • Neagu M, Manda G, Constantin C, et al. Synthetic porphyrins in experimental photodynamic therapy induce a different antitumoral effect. J Porphyrins Phthalocyanines. 2007;11:58–65.
  • Ion R-M. Porphyrins and phthalocyanines: photosensitizers and photocatalysts. In Phthalocyanines and Some Current Applications. London: IntechOpen Limited. 2017; vol. 9. p. 189–222.
  • Pandey J, Gupta S. Bioplastics: need for the future. International Journal of Engineering Technology Science and Research 2015;2:1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.