252
Views
7
CrossRef citations to date
0
Altmetric
Articles

The bactericidal potential of LLDPE with TiO2/ZnO nanocomposites against multidrug resistant pathogens associated with hospital acquired infections

ORCID Icon, , , , &
Pages 1757-1769 | Received 02 Sep 2019, Accepted 26 May 2020, Published online: 26 Jun 2020

References

  • Revelas A. Healthcare–associated infections: A public health problem. Niger Med J. 2012;53(2):59.
  • Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067.
  • World Health Organization. Report on the burden of endemic health care-associated infection worldwide. 2011
  • Zarb P, Coignard B, Griskeviciene J, et al. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Eurosurveillance. 2012;17(46):20316.
  • Magill SS, Hellinger W, Cohen J, et al. Prevalence of healthcare-associated infections in acute care hospitals in Jacksonville, Florida. Infect Control Hosp Epidemiol. 2012;33(3):283–291.
  • Yallew WW, Kumie A, Yehuala FM. Point prevalence of hospital-acquired infections in two teaching hospitals of Amhara region in Ethiopia. Drug Healthc Patient Saf. 2016;8:71–76.
  • Alvarez-Lerma F, Gracia-Arnillas MP, Palomar M, et al. Urethral catheter-related urinary infection in critical patients admitted to the ICU. Descriptive data of the ENVIN-UCI study. Med Intensiva (English Edition). 2013;37(2):75–82.
  • Ling ML, Apisarnthanarak A, Madriaga G. The burden of healthcare-associated infections in Southeast Asia: a systematic literature review and meta-analysis. Clin Infect Dis. 2015;60(11):1690–1699.
  • Hughes AJ, Ariffin N, Huat TL, et al. Prevalence of nosocomial infection and antibiotic use at a university medical center in Malaysia. Infect Control Hosp Epidemiol. 2005;26(1):100–104.
  • Danchaivijitr S, Judaeng T, Sripalakij S, et al. Prevalence of nosocomial infection in Thailand. J Med Assoc Thail. 2006;90(8):1524.
  • Wang L, Zhou KH, Chen W, et al. Epidemiology and risk factors for nosocomial infection in the respiratory intensive care unit of a teaching hospital in China: A prospective surveillance during 2013 and 2015. BMC Infect Dis. 2019;19(1):145.
  • WHO. Global Priority List of Antibiotic. -Resistant Bacteria. to Guide Research, Discovery, and Development of New Antibiotics. Available online: https://www.who.int/medicines/publications/global-priority-listantibiotic-resistant-bacteria/en/.
  • World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf?sequence=1.
  • Ministry of Health Malaysia. National Surveillance of Antimicrobial Resistance; 2016. Available online: https://www.imr.gov.my/images/uploads/NSAR/NSAR_2016/NSAR_report_2016.pdf.
  • Ministry of Health Malaysia. National Surveillance of Antimicrobial Resistance; 2017. Available online: https://www.imr.gov.my/images/uploads/NSAR/NSAR_2017/NSAR_report_2017-edited-31.1.2019.pdf.
  • Parajuli NP, Acharya SP, Mishra SK, et al. High burden of antimicrobial resistance among gram negative bacteria causing healthcare associated infections in a critical care unit of Nepal. Antimicrob Resist Infect Control. 2017;6(1):67.
  • Gupta N, Limbago BM, Patel JB, et al. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–67.
  • Keynan Y, Rubinstein E. The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents. 2007;30(5):385–389.
  • Caneiras C, Lito L, Melo-Cristino J, et al. Community-and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: virulence and antibiotic resistance. Microorganisms. 2019;7(5):138.
  • Oliveira ACD, Kovner CT, Silva RSD. Nosocomial infection in an intensive care unit in a Brazilian university hospital. Rev Lat Am Enfermagem. 2010;18(2):233–239.
  • Warren JW. Catheter-associated urinary tract infections. Int J Antimicrob Agents. 2001;17(4):299–303.
  • Wo Y, Brisbois EJ, Wu J, et al. Reduction of thrombosis and bacterial infection via controlled nitric oxide (NO) release from S-Nitroso-N-acetylpenicillamine (SNAP) impregnated CarboSil intravascular catheters. ACS Biomater Sci Eng. 2017;3(3):349–359.
  • Swahn B, Gunne I. The properties of the polyethylene catheter. Ann Radiol (Paris). 1979;22(4):356–357.
  • Zheng Y, Miao J, Zhang F, et al. Surface modification of a polyethylene film for anticoagulant and anti-microbial catheter. React Funct Polym. 2016;100:142–150.
  • Fresnais J, Chapel JP, Poncin-Epaillard F. Synthesis of transparent superhydrophobic polyethylene surfaces. Surf Coat Technol. 2006;200(18-19):5296–5305.
  • Lu X, Zhang C, Han Y. Low‐density polyethylene superhydrophobic surface by control of its crystallization behavior. Macromol Rapid Commun. 2004;25(18):1606–1610.
  • Tamboli SM, Mhaske ST, Kale DD. Crosslinked polyethylene. Indian J Chem Technol. 2004;11:853–864.
  • Yuan Z, Chen H, Zhang J, et al. Preparation and characterization of self-cleaning stable superhydrophobic linear low-density polyethylene. Sci Technol Adv Mater. 2008;9(4):045007
  • Paxton NC, Allenby MC, Lewis PM, et al. Biomedical applications of polyethylene. Eur Polym J. 2019;118:412–428.
  • Nguyen VT, Vu VT, Nguyen TA, et al. Antibacterial Activity of TiO2-and ZnO-Decorated with Silver Nanoparticles. J Compos Sci. 2019;3(2):61.
  • Saharudin K, Sreekantan S, Basiron N, et al. Bacteriostatic Activity of LLDPE Nanocomposite Embedded with Sol–Gel Synthesized TiO2/ZnO Coupled Oxides at Various Ratios. Polymers. 2018 ;10(8):878.
  • Leung YH, Xu X, Ma AP, et al. Toxicity of ZnO and TiO2 to Escherichia coli cells. Sci Rep. 2016;6:35243
  • Altan M, Yildirim H. Comparison of antibacterial properties of nano TiO2 and ZnO particle filled polymers. Acta Phys Pol A. 2014;125(2):645–647.
  • Akhavan O. Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci. 2009;336(1):117–124.
  • Gholap H, Warule S, Sangshetti J, et al. Hierarchical nanostructures of Au@ZnO: antibacterial and antibiofilm agent. Appl Microbiol Biotechnol. 2016;100(13):5849–5858.
  • Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6(6):5164–5173.
  • von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae-state of the art and knowledge gaps. Nanotoxicology. 2014;8(6):605–630.
  • Goel S, Dubey P, Ray S, et al. Co-sputtered Antibacterial and Biocompatible Nanocomposite Titania-Zinc Oxide thin films on Si substrates for Dental Implant applications. Mater Technol. 2019;34(1):32–42.
  • Yusuf Y, Ghazali MJ, Otsuka Y, et al. Antibacterial properties of laser surface-textured TiO2/ZnO ceramic coatings. Ceram Int. 2020;46(3):3949–3959.
  • Saharudin K, Sreekantan S, Basiron N, et al. 3ZnO/TiO2 Coupled Oxides LLDPE Nanocomposite: Effect of Various Weight Percent of Sol-gel Synthesized Catalyst on Structural and Bacteriostatic Activity Against S. Aureus and E. Coli. Biomed J Sci Tech Res. 2018; 8(4): 1-10.
  • Edition AS. CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute. 2012. 32(1):76.
  • ASTM International. ASTM E2149: Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions. 2013. West Conshohocken, Pennsylvania
  • Kairyte K, Kadys A, Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B Biol. 2013;128:78–84.
  • Basak G, Das D, Das N. Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticle synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans. J Microbiol Biotechnol. 2014 ;24(1):87–96.
  • Harun NH, Mydin RBS, Sreekantan S, et al. Antibacterial activity of heterogeneous TiO2 and ZnO nanoparticles against Gram-positive and Gram-negative bacterial pathogens. J Biomed Clin Sci (JBCS). 2018;3(1):75–78.
  • Joe A, Park SH, Shim KD, et al. Antibacterial mechanism of ZnO nanoparticles under dark conditions. J Ind Eng Chem. 2017;45:430–439.
  • Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020–4028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.