3,242
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges

ORCID Icon
Pages 1219-1249 | Received 25 Jan 2021, Accepted 17 Mar 2021, Published online: 14 Apr 2021

References

  • Pal M, Berhanu G, Desalegn C, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020;12(3).
  • Flynn Makic MB. Prone position of patients with COVID-19 and acute respiratory distress syndrome. J Perianesth Nurs. 2020;35(4):437–438.
  • Piantadosi CA, Schwartz DA. The acute respiratory distress syndrome. Ann Intern Med. 2004;141(6):460–470.
  • Han J, Li Y, Li Y. Strategies to enhance mesenchymal stem cell-based therapies for acute respiratory distress syndrome. Stem Cells Int. 2019;2019:5432134.
  • Li L, Huang Q, Wang DC, et al. Acute lung injury in patients with COVID-19 infection. Clin Transl Med. 2020;10(1):20–27.
  • Patel VJ, Biswas Roy S, Mehta HJ, et al. Alternative and natural therapies for acute lung injury and acute respiratory distress syndrome. Biomed Res Int. 2018;2018:2476824.
  • Puneet P, Moochhala S, Bhatia M. Chemokines in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L3–L15.
  • Rana MM. Cytokine storm in COVID-19: potential therapeutics for immunomodulation. J Res Clin Med. 2020;8(1):38–38.
  • Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen. 2020;40(1):37.
  • Beitler JR, Schoenfeld DA, Taylor Thompson B. Preventing ARDS: progress, promise, and pitfalls. Chest. 2014;146(4):1102–1113.
  • Osman N, Kaneko K, Carini V, et al. Saleem, I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv. 2018;15(8):821–834.
  • Patil JS, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India. 2012;29(1):44–49.
  • Omri A. Pulmonary drug and vaccine delivery: therapeutic significance and major challenges. Expert Opin Drug Deliv. 2015;12(6):853–855.
  • Song HHG, Rumma RT, Ozaki CK, et al. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018;22(3):340–354.
  • Van Rijt SH, Bein T, Meiners S. Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J. 2014;44(3):765–774.
  • Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. IJN. 2017;12:7291–7309.
  • Tsuchiya T, Doi R, Obata T, et al. Lung microvascular niche, repair, and engineering. Front Bioeng Biotechnol. 2020;8:105.
  • Lim YH, Tiemann KM, Hunstad DA, et al. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(6):842–871.
  • De Santis MM, Bölükbas DA, Lindstedt S, et al. How to build a lung: latest advances and emerging themes in lung bioengineering. Eur Respir J. 2018;52(1):1–19.
  • Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182(2):429–446.e14.
  • Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590.
  • Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021;11(1):316–329.
  • Badraoui R, Alrashedi MM, El-May MV, et al. Acute respiratory distress syndrome: a life threatening associated complication of SARS-CoV-2 infection inducing COVID-19. J Biomol Struct Dyn. 2020;1–10.
  • Sartori C, Matthay MA. Alveolar epithelial fluid transport in acute lung injury: new insights. Eur Respir J. 2002;20(5):1299–1313.
  • Matuschak GM, Lechner AJ. Acute lung injury and the acute respiratory distress syndrome: pathophysiology and treatment. Mo Med. 2010;107(4):252–258.
  • Zemans RL, Matthay MA. What drives neutrophils to the alveoli in ARDS? Thorax. 2017;72(1):1–3.
  • Gallelli L, Zhang L, Wang T, et al. Severe acute lung injury related to COVID-19 infection: a review and the possible role for escin. J Clin Pharmacol. 2020;60(7):815–825.
  • Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 2005;33(4):319–327.
  • Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14(4):3822–3835.
  • Bhalla N, Pan Y, Yang Z, et al. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–7807.
  • Surkova E, Nikolayevskyy V, Drobniewski F. False-positive COVID-19 results: hidden problems and costs. Lancet Respir Med. 2020;8(12):1167–1168.(20)30453-7.
  • Pokhrel P, Hu C, Mao H. Detecting the coronavirus (CoVID-19). ACS Sens. 2020;5(8):2283–2297.
  • Malik AA, Nantasenamat C, Piacham T. Molecularly imprinted polymer for human viral pathogen detection. Mater Sci Eng C Mater Biol Appl. 2017;77:1341–1348.
  • Goud KY, Reddy KK, Khorshed A, et al. Electrochemical diagnostics of infectious viral diseases: trends and challenges. Biosens Bioelectron. 2021;180:113112.
  • Navakul K, Warakulwit C, Yenchitsomanus P. t, et al. A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomedicine. 2017;13(2):549–557.
  • Lu CH, Zhang Y, Tang SF, et al. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron. 2012;31(1):439–444.
  • Wangchareansak T, Thitithanyanont A, Chuakheaw D, et al. A novel approach to identify molecular binding to the influenza virus H5N1: screening using molecularly imprinted polymers (MIPs). Medchemcomm. 2014;5(5):617–621.
  • Tai DF, Lin CY, Wu TZ, et al. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film. Anal Chem. 2005;77(16):5140–5143.
  • Nandy Chatterjee T, Bandyopadhyay R. A molecularly imprinted polymer-based technology for rapid testing of COVID-19. Trans Indian Natl Acad Eng. 2020;5(2):225–228.
  • Iravani S. Nano- and biosensors for the detection of SARS-CoV-2: challenges and opportunities. Mater Adv. 2020;1(9):3092–3103.
  • Murthy S, Gomersall CD, Fowler RA. Care for critically ill patients with COVID-19. JAMA. 2020;323(15):1499–1500.
  • Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):1–18.
  • Aokage T, Palmér K, Ichiba S, et al. Extracorporeal membrane oxygenation for acute respiratory distress syndrome. J Intensive Care. 2015;3(1):17.
  • Wu MY, Huang CC, Wu TI, et al. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome in adults prognostic factors for outcomes. Medicine (United States). 2016;95(8):e2870.
  • Wu R, Wang L, Kuo HCD, et al. An update on current therapeutic drugs treating COVID-19. Curr Pharmacol Reports. 2020;6:56–70.
  • Ho ATN, Patolia S, Guervilly C. Neuromuscular blockade in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. J Intensive Care. 2020;8:1–11. https://doi.org/10.1186/s40560-020-0431-z.
  • Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19 - a systematic review of current evidence. Ecancermedicalscience. 2020;14(1022): 1–43.
  • Curran CS, Rivera DR, Kopp JB. COVID-19 usurps host regulatory networks. Front Pharmacol. 2020;11:1278.
  • Bonam SR, Kaveri SV, Sakuntabhai A, et al. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Rep Med. 2020;1(2):100016.
  • Sivasankarapillai VS, Pillai AM, Rahdar A, et al. On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: possible strategies and first challenges. Nanomaterials. 2020;10(5):852.
  • Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-NCoV lung injury. Lancet. 2020;395(10223):473–475.
  • Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2020;1–40.
  • Patel A, Patel M, Yang X, et al. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21(11):1102–1120.
  • Casalini T, Rossi F, Castrovinci A, et al. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259.
  • Daglar B, Ozgur E, Corman ME, et al. Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv. 2014;4(89):48639–48659.
  • Avramović N, Mandić B, Savić-Radojević A, et al. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics. 2020;12(4):298.
  • Zhao J, Stenzel MH. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem. 2018;9(3):259–272.
  • Vijayakameswara Rao N, Ko H, Lee J, et al. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front Bioeng Biotechnol. 2018;6:110.
  • Brighenti R, Li Y, Vernerey FJ. Smart polymers for advanced applications: a mechanical perspective review. Front Mater. 2020;7:196.
  • Mohd Amin MCI, Ahmad N, Halib N, et al. Synthesis and characterization of thermo- and PH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym. 2012;88(2):465–473.
  • De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747.
  • Soota K, Maliakkal B. Ribavirin induced hemolysis: a novel mechanism of action against chronic hepatitis C virus infection. World J Gastroenterol. 2014;20(43):16184–16190.
  • Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145–1162.
  • Haggag Y, Elshikh M, El-Tanani M, et al. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv Transl Res. 2020;10(5):1353–1366.
  • Hillaireau H, Le Doan T, Besnard M, et al. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int J Pharm. 2006;324(1):37–42.
  • Deng S, Gigliobianco MR, Censi R, et al. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020;10(5):847.
  • Donalisio M, Leone F, Civra A, et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics. 2018;10(2):46.
  • Xu Y, Liu H, Song L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J Nanobiotechnology. 2020;18(1):145.
  • Nishiyama N, Matsumura Y, Kataoka K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci. 2016;107(7):867–874.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
  • Wu J, Yuan J, Ye B, et al. Dual-responsive core crosslinking glycopolymer-drug conjugates nanoparticles for precise hepatocarcinoma therapy. Front Pharmacol. 2018;9(Jul):663.
  • Kim K-T, Lee J-Y, Kim D-D, et al. Recent progress in the development of poly(lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics. 2019;11(6):280.
  • Li W, Yu F, Wang Q, et al. Co-delivery of HIV-1 entry inhibitor and nonnucleoside reverse transcriptase inhibitor shuttled by nanoparticles: cocktail therapeutic strategy for antiviral therapy. AIDS. 2016;30(6):827–837.
  • Lu X, Zhu T, Chen C, et al. Right or left: the role of nanoparticles in pulmonary diseases. Int J Mol Sci. 2014;15(10):17577–17600.
  • Jamali A, Mottaghitalab F, Abdoli A, et al. Inhibiting influenza virus replication and inducing protection against lethal influenza virus challenge through chitosan nanoparticles loaded by SiRNA. Drug Deliv Transl Res. 2018;8(1):12–20.
  • Kudgus RA, Walden CA, McGovern RM, et al. Tuning pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive targeting component. Sci Rep. 2014;4(1):1–9.
  • Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and SiRNA. Front Pharmacol. 2014;5:77.
  • Rad AH, Asiaee F, Jafari S, et al. Poly(ethylene glycol)-poly(ε-caprolactone)-based micelles for solubilization and tumor-targeted delivery of silibinin. Bioimpacts. 2020;10(2):87–95.
  • Rani S, Gothwal A, Khan I, et al. Smartly engineered PEGylated Di-block nanopolymeric micelles: duo delivery of isoniazid and rifampicin against mycobacterium tuberculosis. AAPS PharmSciTech. 2018;19(7):3237–3248.
  • Sheth U, Tiwari S, Bahadur A. Preparation and characterization of anti-tubercular drugs encapsulated in polymer micelles. J Drug Deliv Sci Technol. 2018;48:422–428.
  • Ahn YS, Baik HJ, Lee BR, et al. Preparation of multifunctional polymeric micelles for antiviral treatment. Macromol Res. 2010;18(8):747–752.
  • Alven S, Nqoro X, Buyana B, et al. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics. 2020;12(5):406.
  • Aquino RS, Park PW. Glycosaminoglycans and infection. Front Biosci (Landmark Ed). 2016;21(6):1260–1277.
  • Smith AAA, Kryger MBL, Wohl BM, et al. Macromolecular (pro)drugs in antiviral research. Polym Chem. 2014;5(22):6407–6425.
  • Van Dongen MA, Dougherty CA, Banaszak Holl MM. Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules. 2014;15(9):3215–3234.
  • Kuo YC, Lin PI, Wang CC. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine (Lond). 2011;6(6):1011–1026.
  • Dhoke DM, Basaiyye SS, Khedekar PB. Development and characterization of L-HSA conjugated PLGA nanoparticle for hepatocyte targeted delivery of antiviral drug. J Drug Deliv Sci Technol. 2018;47:77–94.
  • Destache CJ, Belgum T, Christensen K, et al. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect Dis. 2009;9(198): 1–8.
  • Ramana LN, Sharma S, Sethuraman S, et al. Evaluation of chitosan nanoformulations as potent anti-HIV therapeutic systems. Biochim Biophys Acta. 2014;1840(1):476–484.
  • Ahmad Z, Pandey R, Sharma S, et al. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 2006;48(3):171–176.
  • Kalombo L, Lemmer Y, Semete-Makokotlela B, et al. Spray-dried, nanoencapsulated, multi-drug anti-tuberculosis therapy aimed at once weekly administration for the duration of treatment. Nanomaterials. 2019;9(8):1167.
  • Grande F, Ioele G, Occhiuzzi MA, et al. Reverse transcriptase inhibitors nanosystems designed for drug stability and controlled delivery. Pharmaceutics. 2019;11(5):197.
  • Gong Y, Chowdhury P, Midde NM, et al. Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages. Biochem Biophys Rep. 2017;12:214–219.
  • Varshosaz J, Taymouri S, Jafari E, et al. Formulation and characterization of cellulose acetate butyrate nanoparticles loaded with nevirapine for HIV treatment. J Drug Deliv Sci Technol. 2018;48:9–20.
  • Tyagi R, Lala S, Verma AK, et al. Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J Drug Target. 2005;13(3):161–171.
  • Zhou L, Zhang P, Chen Z, et al. Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Candida Albicans. Int J Nanomedicine. 2017;12:4269–4283.
  • Giannavola C, Bucolo C, Maltese A, et al. Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm Res. 2003;20(4):584–590. [12739765]
  • Fresta M, Fontana G, Bucolo C, et al. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)‐coated polyethyl‐2‐cyanoacrylate nanosphere‐encapsulated acyclovir. J Pharm Sci. 2001;90(3):288–297.
  • Mosqueira VCF, Loiseau PM, Bories C, et al. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in plasmodium berghei-infected mice. Antimicrob Agents Chemother. 2004;48(4):1222–1228.
  • Calvo P, Vila-Jato JL, Alonso M. J. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85(5):530–536.
  • Li Q, Du YZ, Yuan H, et al. Synthesis of lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur J Pharm Sci. 2010;41(3–4):498–507.
  • Silva M, Ricelli NL, Seoud OE, et al. Potential tuberculostatic agent: micelle-forming pyrazinamide prodrug. Arch Pharm (Weinheim). 2006;339(6):283–290.
  • Sawdon AJ, Peng CA. Polymeric micelles for acyclovir drug delivery. Colloids Surf B Biointerfaces. 2014;122:738–745.
  • Yandrapu SK, Kanujia P, Chalasani KB, et al. Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: an acyclovir model formulation. Nanomedicine. 2013;9(4):514–522.
  • Ma M, Cheng Y, Xu Z, et al. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem. 2007;42(1):93–98.
  • Bhadra D, Bhadra S, Jain NK. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm Res. 2006;23(3):623–633.
  • Cheng Y, Qu H, Ma M, et al. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem. 2007;42(7):1032–1038.
  • Cojocaru FD, Botezat D, Gardikiotis I, et al. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics. 2020;12(2):171.
  • Srinivas P, Reddy A. Formulation and evaluation of isoniazid loaded nanosponges for topical delivery. PNT. 2015;3(1):68–76.
  • Mcdonald TO, Giardiello M, Martin P, et al. Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation. Adv Healthc Mater. 2014;3(3):400–411.
  • Sun B, Yeo Y. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Curr Opin Solid State Mater Sci. 2012;16(6):295–301.
  • Janaszewska A, Lazniewska J, Trzepiński P, et al. Cytotoxicity of dendrimers. Biomolecules. 2019;9(8):1–23.
  • Mhlwatika Z, Aderibigbe BA. Application of dendrimers for the treatment of infectious diseases. Molecules. 2018;23(9):2205.
  • Sepúlveda-Crespo D, Ceña-Díez R, Jiménez JL, et al. Mechanistic studies of viral entry: an overview of dendrimer-based microbicides as entry inhibitors against both HIV and HSV-2 overlapped infections. Med Res Rev. 2017;37(1):149–179.
  • Caminade AM, Turrin CO, Majoral JP. Biological properties of phosphorus dendrimers. New J Chem. 2010;34(8):1512–1524.
  • Briz V, Sepúlveda-Crespo D, Diniz AR, et al. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides. Nanoscale. 2015;7(35):14669–14683.
  • Heinrich MA, Martina B, Prakash J. Nanomedicine strategies to target coronavirus. Nano Today. 2020;35:100961.
  • Sun Y, Guo F, Zou Z, et al. Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part Fibre Toxicol. 2015;12(1):1–13.
  • Tan GT, Wickramasinghe A, Verma S, et al. Sulfonic acid polymers are potent inhibitors of HIV-1 induced cytopathogenicity and the reverse transcriptases of both HIV-1 and HIV-2. BBA - Mol. Basis Dis. 1993;1181(2):183–188.
  • Schols D, De Clercq E, Balzarini J, et al. Sulphated polymers are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, respiratory syncytial virus, and toga-, arena- and retroviruses. Antivir Chem Chemother. 1990;1(4):233–240.
  • Danial M, Andersen AHF, Zuwala K, et al. Triple activity of lamivudine releasing sulfonated polymers against HIV-1. Mol Pharm. 2016;13(7):2397–2410.
  • Bianculli RH, Mase JD, Schulz MD. Antiviral polymers: past approaches and future possibilities. Macromolecules. 2020;53(21):9158–9186.
  • Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–267.
  • Zubik K, Singhsa P, Wang Y, et al. Thermo-responsive poly(n-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers (Basel). 2017;9(12):119.
  • Tian S, Liu G, Wang X, et al. PH-responsive tumor-targetable theranostic nanovectors based on core crosslinked (CCL) micelles with fluorescence and magnetic resonance (MR) dual imaging modalities and drug delivery performance. Polymers (Basel). 2016;8(6):226.
  • Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, et al. Thermoresponsive nanogels based on different polymeric moieties for biomedical applications. Gels. 2020;6(3):20.
  • Chen J, Li G, Liu Q, et al. A photocleavable amphiphilic prodrug self-assembled nanoparticles with effective anticancer activity in vitro. Nanomaterials. 2019;9(6):860.
  • Shin JM, Choi GH, Song SH, et al. Metal-phenolic network-coated hyaluronic acid nanoparticles for PH-responsive drug delivery. Pharmaceutics. 2019;11(12):636.
  • Gandhi A, Paul A, Sen SO, et al. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci. 2015;10(2):99–107.
  • Ramos J, Imaz A, Forcada J. Temperature-sensitive nanogels: poly(n-vinylcaprolactam) versus poly(n-isopropylacrylamide). Polym Chem. 2012;3(4):852–856.
  • Zhang Q, Honko A, Zhou J, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020;20(7):5570–5574.
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–517.
  • Liu MA. The immunologist's grail: vaccines that generate cellular immunity. Proc Natl Acad Sci U S A. 1997;94(20):10496–10498.
  • Tahamtan A, Charostad J, Hoseini Shokouh SJ, et al. An overview of history, evolution, and manufacturing of various generations of vaccines. J Arch Mil Med. 2017;5(e12315 ):1–7.
  • Finco O, Rappuoli R. Designing vaccines for the twenty-first century society. Front Immunol. 2014;5(Jan):12.
  • Dong Y, Dai T, Wei Y, et al. A systematic review of SARS-CoV-2 vaccine candidates. Sig Transduct Target Ther. 2020;5:237.
  • Yang J, Wang W, Chen Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020;586(7830):572–577.
  • Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 NCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–478.
  • Walsh EE, Frenck RW, Falsey AR, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med. 2020;383:2439–2450.
  • de Alwis R, Gan ES, Chen S, et al. A single dose of self-transcribing and replicating RNA based SARS-CoV-2 vaccine produces protective adaptive immunity in mice.   Mol Ther. 2021 (In Press). doi: https://doi.org/10.1016/j.ymthe.2021.04.001.
  • Chandra Baray J, Maksudur Rahman Khan M, Mahmud A, et al. BANCOVID, the first D614G variant MRNA-based vaccine candidate against SARS-CoV-2 elicits neutralizing antibody and balanced cellular immune response. bioRxiv. 2020.
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An MRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020;383:1920–1931.
  • Rauch S, Roth N, Schwendt K, et al. mRNA based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus neutralizing antibodies and mediates protection in rodents. bioRxiv. 2020. doi: https://doi.org/10.1101/2020.10.23.351775
  • Shao L, Wu WS. Gene-delivery systems for IPS cell generation. Expert Opin Biol Ther. 2010;10(2):231–242.
  • Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2):191.
  • Mahalingam S, Ng WH, Liu X. Development of vaccines for SARS-CoV-2. F1000Res. 2020;9:991.
  • Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an RAd26 and RAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887–897.
  • Sadoff J, Le Gars M, Shukarev G, Heerwegh, et al. Interim results of a phase 1–2a trial of Ad26.COV2.S covid-19 vaccine. N Engl J Med. 2021.
  • Anywaine Z, Whitworth H, Kaleebu P, et al. Safety and immunogenicity of a 2-dose heterologous vaccination regimen with Ad26.ZEBOV and MVA-BN-filo ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Uganda and Tanzania. J Infect Dis. 2019;220(1):46–56.
  • Guebre-Xabier M, Patel N, Tian J-H, et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine. 2020;38(50):7892–7896.
  • Zimmer C, Corum J, Wee S-L. Covid-19 vaccine tracker updates: the latest. The New York Times [accessed Mar 9, 2021]. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html.
  • Pandey SC, Pande V, Sati D, et al. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci. 2020;256:117956.
  • Brisse M, Vrba SM, Kirk N, et al. Emerging concepts and technologies in vaccine development. Front Immunol. 2020;11:583077.
  • Li J, Xue S, Mao ZW. Nanoparticle delivery systems for SiRNA-based therapeutics. J Mater Chem B. 2016;4(41):6620–6639.
  • Kalam MA, Khan AA, Alshamsan A. Non-invasive administration of biodegradable nano-carrier vaccines. Am J Transl Res. 2017;9(1):15–35.
  • Chauhan G, Madou MJ, Kalra S, et al. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020;14(7):7760–7782.
  • Ghitman J, Biru EI, Stan R, et al. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater Des. 2020;193:108805.
  • Catoira MC, Fusaro L, Di Francesco D, et al. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):1–10.
  • Afewerki S, Sheikhi A, Kannan S, et al. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics. Bioeng Transl Med. 2019;4(1):96–115.
  • Galloway AL, Murphy A, DeSimone JM, et al. Development of a nanoparticle-based influenza vaccine using the PRINT technology. Nanomedicine. 2013;9(4):523–531.
  • Pardi N, Hogan MJ, Porter FW, et al. MRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279.
  • Lambricht L, Lopes A, Kos S, et al. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv. 2016;13(2):295–310.
  • Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother. 2014;10(9):2761–2774.
  • Bonam SR, Kotla NG, Bohara RA, et al. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today. 2021;36:101051.
  • Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020;288:198114.
  • Keech C, Albert G, Cho I, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383:2320–2332.
  • Irvine DJ, Hanson MC, Rakhra K, et al. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–11146.
  • Aucouturier J, Dupuis L, Deville S, et al. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines. 2002;1(1):111–118.
  • Chang JCC, Diveley JP, Savary JR, et al. Adjuvant activity of incomplete freund’s adjuvant. Adv Drug Deliv Rev. 1998;32(3):173–186.
  • Newman MJ, Balusubramanian M, Todd CW. Development of adjuvant-active nonionic block copolymers. Adv Drug Deliv Rev. 1998;32(3):199–223.
  • Huang MH, Huang CY, Lien SP, et al. Development of multi-phase emulsions based on bioresorbable polymers and oily adjuvant. Pharm Res. 2009;26(8):1856–1862.
  • Haun BK, Lai C-Y, Williams CA, et al. CoVaccine HT™ adjuvant potentiates robust immune responses to recombinant SARS-CoV-2 spike S1 immunization. Front Immunol. 2020;11:599587.
  • Kusi KA, Remarque EJ, Riasat V, et al. Safety and immunogenicity of multi-antigen AMA1-based vaccines formulated with CoVaccine HT™ and Montanide ISA 51 in rhesus macaques. Malar J. 2011;10(1):182.
  • Lakhan N, Stevens NE, Diener KR, et al. CoVaccine HTTM adjuvant is superior to Freund’s adjuvants in eliciting antibodies against the endogenous alarmin HMGB1. J Immunol Methods. 2016;439:37–43.
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Infect. 2020;80(6):607–613.
  • Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271–292.
  • Wu Z, Kong B, Liu R, et al. Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials. 2018;8(2):124.
  • Zhang Y, Wang C, Fu L, et al. Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3D printing for repairing critical-sized bone defect. Molecules. 2019;24(9):1–20.
  • Wang L, Dong S, Liu Y, et al. Fabrication of injectable, porous hyaluronic acid hydrogel based on an in-situ bubble-forming hydrogel entrapment process. Polymers (Basel). 2020;12(5):1–15.
  • Andrade CF, Wong AP, Waddell TK, et al. Cell-based tissue engineering for lung regeneration. Am J Physiol - Lung Cell Mol Physiol. 2007;292(2):L510–L518.
  • Shannon JM, McCormick-Shannon K, Burhans MS, et al. Chondroitin sulfate proteoglycans are required for lung growth and morphogenesis in vitro. Am J Physiol Cell Mol Physiol. 2003;285(6):L1323–L1336.
  • Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. 2014;57(4):490–500.
  • Mohammadi Nasr S, Rabiee N, Hajebi S, et al. Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine. Int J Nanomed. 2020;15:4205–4224.
  • Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607–626.
  • Tebyanian H, Karami A, Nourani MR, et al. Lung tissue engineering: an update. J Cell Physiol. 2019;234(11):19256–19270.
  • Shigemura N, Okumura M, Mizuno S, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(11):1199–1205.
  • Deng M, Gu Y, Liu Z, et al. Endothelial differentiation of human adipose-derived stem cells on polyglycolic acid/polylactic acid mesh. Stem Cells Int. 2015;2015:1–11.
  • Pappalardo D, Mathisen T, Finne-Wistrand A. Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules. 2019;20(4):1465–1477.
  • Yang R, Tan L, Cen L, et al. An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Adv. 2016;6(20):16838–16850.
  • George PM, Barratt SL, Condliffe R, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020;75(11):1009–1016.
  • Sadikot RT, Kolanjiyil AV, Kleinstreuer C, et al. Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome. Biomed Hub. 2017;2(2):1–12.
  • Sadikot RT. Peptide nanomedicines for treatment of acute lung injury. In Methods in enzymology. Vol. 508. Academic Press Inc.; 2012, 508:315–324.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.
  • Weiss C, Carriere M, Fusco L, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano. 2020;14(6):6383–6406.
  • Santos I, de A, Grosche VR, Bergamini FRG, et al. Antivirals against coronaviruses: candidate drugs for SARS-CoV-2 treatment? Front Microbiol. 2020;11:1818.
  • Itani R, Tobaiqy M, Faraj A. Al. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020;10(13):5932–5942.
  • Liu Y, Hardie J, Zhang X, et al. Effects of engineered nanoparticles on the innate immune system. Semin Immunol. 2017;34:25–32.
  • Richtering W, Alberg I, Zentel R. Nanoparticles in the biological context: surface morphology and protein corona formation. Small. 2020;16(39):2002162.
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. CDT. 2015;16(14):1671–1681.
  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016;1:16071.
  • Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008.
  • Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16(4):371–383. [InsertedFromOnline[pubmedMismatch]]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.