456
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances of polymer based nanosystems in cancer management

, , , , & ORCID Icon
Pages 1274-1335 | Received 13 Oct 2022, Accepted 20 Dec 2022, Published online: 02 Jan 2023

References

  • Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev. 2009;109(7):2859–2861.
  • Cancer; [accessed 2022 Sep 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  • Yadav P, Jain J, Sherje AP. Recent advances in nanocarriers-based drug delivery for cancer therapeutics: a review. React Funct Polym. 2021;165:104970.
  • Mitra AK, Agrahari V, Mandal A, et al. Novel delivery approaches for cancer therapeutics. J Control Release. 2015;219:248–268.
  • Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217–222.
  • Bidram E, Esmaeili Y, Ranji-Burachaloo H, et al. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol. 2019;54:101350.
  • Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–199.
  • Cortes J, Saura C. Nanoparticle albumin-bound (nabTM)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur J Cancer Suppl. 2010;8(1):1–10.
  • O'Brien MER, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of PEGylated liposomal doxorubicin HCl (CAELYXTM/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–449.
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193.
  • Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells. 2011;31(4):295–302.
  • Lancet JE, Uy GL, Newell LF, et al. CPX-351 versus 7 + 3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2021;8(7):e481–e491.
  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Obj. 2019;20:100397.
  • Prajapati SK, Jain A, Jain A, et al. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J. 2019;120:109191.
  • Wen R, Umeano AC, Chen P, et al. Polymer-based drug delivery systems for cancer. Crit Rev Ther Drug Carrier Syst. 2018;35(6):521–553.
  • Agnihotri TG, Jadhav GS, Sahu B, et al. Recent trends of bioconjugated nanomedicines through nose-to-brain delivery for neurological disorders. Drug Deliv Transl Res. 2022;12(12):3104–3120.
  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85.
  • Idrees H, Zaidi SZJ, Sabir A, et al. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials. 2020;10(10):1970–1922.
  • Wong KH, Lu A, Chen X, et al. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules. 2020;25(16):3620.
  • Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338–5431.
  • Ige OO, Umoru LE, Aribo S. Natural products: a minefield of biomaterials. ISRN Mater Sci. 2012;2012:983062.
  • Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym. 2019;225:115210.
  • Garg T, Singh O, Arora S, et al. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29(1):1–63.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–1662.
  • Hamman JH. Composition and applications of aloe vera leaf gel. Molecules. 2008;13(8):1599–1616.
  • de Frates K, Markiewicz T, Gallo P, et al. Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci. 2018;19(6):1717.
  • Barar J, Omidi Y. Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts. 2014;4(1):3–14. 10.5681/bi.2014.011
  • Guo Z, Poot AA, Grijpma DW. Advanced polymer-based composites and structures for biomedical applications. Eur Polym J. 2021;149:110388.
  • Bisht S, Maitra A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4):415–425.
  • Chaitra K, Ravi Singh K, Raghu MS, et al. Mucic acid cross-linked chitosan nanoparticles as a dual drug delivery system for treatment of colorectal cancer- insilico and invitro studies. Chem Data Collect. 2022;41:100928.
  • Kuzminac IZ, Ćelić AS, Bekić SS, et al. Hormone receptor binding, selectivity and cytotoxicity of steroid d-homo lactone loaded chitosan nanoparticles for the treatment of breast and prostate cancer cells. Colloids Surf B Biointerfaces. 2022;216:112597.
  • Viswanadh MK, Mehata AK, Sharma V, et al. Muthu, bioadhesive chitosan nanoparticles: dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr Polym. 2021;274:118617.
  • Mirdamadian SZ, Varshosaz J, Minaiyan M, et al. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/in vivo study. Int J Biol Macromol. 2022;205:90–109.
  • Jayapal JJ, Dhanaraj S. Exemestane loaded alginate nanoparticles for cancer treatment: formulation and in vitro evaluation. Int J Biol Macromol. 2017;105(Pt 1):416–421.
  • Esim O, Hascicek C, Gedik ME, et al. Carboplatin and decitabine loaded lipid-coated albumin nanoparticles for an efficient treatment of platinum-resistant ovarian cancer. J Drug Deliv Sci Technol. 2022;76:103801.
  • Meng F, Liu F, Lan M, et al. Preparation and evaluation of folate-modified albumin baicalin-loaded nanoparticles for the targeted treatment of breast cancer. J Drug Deliv Sci Technol. 2021;65:102603.
  • Khodashenas B, Ardjmand M, Rad AS, et al. Gelatin-coated gold nanoparticles as an effective pH-sensitive methotrexate drug delivery system for breast cancer treatment. Mater Today Chem. 2021;20:100474.
  • Mehata AK, Suseela MNL, Behera C, et al. Muthu, chitosan-alginate nanoparticles of cabazitaxel: design, dual-receptor targeting and efficacy in lung cancer model. Int J Biol Macromol. 2022;221:874–890.
  • Sorasitthiyanukarn FN, Muangnoi C, Bhuket PR, et al. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C Mater Biol Appl. 2018;93:178–190.
  • Esim O, Oztuna A, Sarper M, et al. Chitosan-coated bovine serum albumin nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. J Drug Deliv Sci Technol. 2022;77:103906.
  • Sood A, Gupta A, Bharadwaj R, et al. Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydr Polym. 2022;294:119833.
  • Qi L, Xu Z, Jiang X, et al. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–2700.
  • Kasapoglu-Calik M, Ozdemir M. Synthesis and controlled release of curcumin-β-cyclodextrin inclusion complex from nanocomposite poly(N-isopropylacrylamide/sodium alginate) hydrogels. J Appl Polym Sci. 2019;136(21):47554.
  • Wang H, Gong X, Miao Y, et al. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chem. 2019;283:397–403.
  • Zhang C, Wang W, Liu T, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials. 2012;33(7):2187–2196.
  • Kendra DF, Hadwiger LA. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp Mycol. 1984;8(3):276–281.
  • Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnol. 1992;6(3):257–272.
  • Tsai GJ, Su WH. Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot. 1999;62(3):239–243.
  • van der Lubben IM, Verhoef JC, Borchard G, et al. Chitosan for mucosal vaccination. Adv Drug Deliv Rev. 2001;52(2):139–144.
  • Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed. 2011;6:765–774.
  • Jia Z, Shen D, Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res. 2001;333(1):1–6.
  • Rao W, Wang H, Han J, et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 2015;9(6):5725–5740.
  • Choi KY, Saravanakumar G, Park JH, et al. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces. 2012;99:82–94.
  • Dey A, Koli U, Dandekar P, et al. Investigating behaviour of polymers in nanoparticles of chitosan oligosaccharides coated with hyaluronic acid. Polymer. 2016;93:44–52.
  • Choi KY, Min KH, Yoon HY, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32(7):1880–1889.
  • Mishra SK, Agrawal D. Introduction. In: Mishra SK, Agrawal D, editors. A concise manual of pathogenic microbiology. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2012. p. 1–7.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–223.
  • Leclere L, van Cutsem P, Michiels C. Anti-cancer activities of pH- or heat-modified pectin. Front Pharmacol. 2013;4:128.
  • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1–2):1–22.
  • Luo Z, Cai K, Hu Y, et al. Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew Chem. 2011;123(3):666–669.
  • Chen H. Fabrication of zein nanoparticle-biopolymer complexes to deliver fabrication of zein nanoparticle-biopolymer complexes to deliver essential oils in aqueous dispersions essential oils in aqueous dispersions [PhD dissertation]. Knoxville (TN): University of Tennessee, Knoxville; 2014.
  • Zhong Q, Jin M. Zein nanoparticles produced by liquid-liquid dispersion. Food Hydrocoll. 2009;23(8):2380–2387.
  • Dong F, Dong X, Zhou L, et al. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: preparation, in vitro evaluation, and cellular uptake. Colloids Surf B Biointerfaces. 2016;140:324–331.
  • Karlsson  J, Vaughan HJ, Green JJ. Biodegradable  polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng .  2018;9:105–127. 
  • Zajdel A, Wilczok A, Jelonek K, et al. Cytotoxic effect of paclitaxel and lapatinib co-delivered in polylactide-co-poly(ethylene glycol) micelles on her-2-negative breast cancer cells. Pharmaceutics. 2019;11(4):169.
  • Wang Y, Liang X, Tong R, et al. Gambogic acid-loaded polymeric micelles for improved therapeutic effect in breast cancer. J Biomed Nanotechnol. 2018;14(10):1695–1704.
  • Velpurisiva P, Piel BP, Lepine J, et al. GSK461364A, a polo-like kinase-1 inhibitor encapsulated in polymeric nanoparticles for the treatment of glioblastoma multiforme (GBM). Bioengineering. 2018;5(4):83.
  • Zumaya ALV, Rimpelová S, Štějdířová M, et al. Antibody conjugated PLGA nanocarriers and superparmagnetic nanoparticles for targeted delivery of oxaliplatin to cells from colorectal carcinoma. Int J Mol Sci. 2022;23(3):1200.
  • Rebanda MM, Bettini S, Blasi L, et al. Poly(l-lactide-co-caprolactone-co-glycolide)-based nanoparticles as delivery platform: effect of the surfactants on characteristics and delivery efficiency. Nanomaterials. 2022;12(9):1550.
  • Markowski A, Jaromin A, Migdał P, et al. Design and development of a new type of hybrid PLGA/lipid nanoparticle as an ursolic acid delivery system against pancreatic ductal adenocarcinoma cells. Int J Mol Sci. 2022;23(10):5536.
  • Maksimenko O, Malinovskaya J, Shipulo E, et al. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: towards the pharmaceutical development. Int J Pharm. 2019;572:118733.
  • Xin H, Sha X, Jiang X, et al. Anti-glioblastoma efficacy and safety of paclitaxel-loading angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167–8176.
  • Zou L, Wang D, Hu Y, et al. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles. Oncotarget. 2017;8(36):60453–60468.
  • Hu J, Fu S, Peng Q, et al. Paclitaxel-loaded polymeric nanoparticles combined with chronomodulated chemotherapy on lung cancer: in vitro and in vivo evaluation. Int J Pharm. 2017;516(1–2):313–322.
  • Chen C-K, Law W-C, Aalinkeel R, et al. Well-defined degradable cationic polylactide as nanocarrier for the delivery of siRNA to silence angiogenesis in prostate cancer. Adv Healthc Mater. 2012;1(6):751–761.
  • Pandey SK, Ghosh S, Maiti P, et al. Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer. Int J Biol Macromol. 2015;72:309–319.
  • Mirakabad FST, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev. 2014;15(2):517–535.
  • Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663.
  • Espinoza SM, Patil HI, San Martin Martinez E, et al. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: focus on nanomedicine in cancer. Int J Polym Mater Polym Biomater. 2020;69(2):85–126.
  • Kolluru LP, Chandran T, Shastri PN, et al. Development and evaluation of polycaprolactone based docetaxel nanoparticle formulation for targeted breast cancer therapy. J Nanopart Res. 2020;22(12):372.
  • Grossen P, Witzigmann D, Sieber S, et al. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release. 2017;260:46–60.
  • Loverde SM, Klein ML, Discher DE. Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv Mater. 2012;24(28):3823–3830.
  • Tu Y, Peng F, André AAM, et al. Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano. 2017;11(2):1957–1963.
  • Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed. Washington: American Pharmacists Association; 2006.
  • Turanlı Y, Acartürk F. Fabrication and characterization of budesonide loaded colon-specific nanofiber drug delivery systems using anionic and cationic polymethacrylate polymers. J Drug Deliv Sci Technol. 2021;63:102511.
  • Krishnakumar N, Sulfikkarali NK, Manoharan S, et al. Raman spectroscopic investigation of the chemopreventive response of naringenin and its nanoparticles in DMBA-induced oral carcinogenesis. Spectrochim Acta A Mol Biomol Spectrosc. 2013;115:648–653.
  • Niculescu AG, Grumezescu AM. Polymer-based nanosystems – a versatile delivery approach. Materials. 2021;14(22):6812.
  • Ozturk N, Kara A, Gulyuz S, et al. Exploiting ionisable nature of PEtOx-co-PEI to prepare pH sensitive, doxorubicin-loaded micelles. J Microencapsul. 2020;37(7):467–480.
  • Zhang C, Yuan W, Wu Y, et al. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sci. 2021;266:118886.
  • Thapa B, Kc R, Bahniuk M, et al. Breathing new life into TRAIL for breast cancer therapy: co-delivery of pTRAIL and complementary siRNAs using lipopolymers. Hum Gene Ther. 2019;30(12):1531–1546.
  • Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments HHS public access. Annu Rev Chem Biomol Eng. 2018;9(1):105–127.
  • Ali H, Rizi Y, Shin DH, et al. Polymeric nanoparticles in cancer chemotherapy: a narrative review. Iran J Public Health. 2022;51(2):226–239.
  • Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–2561.
  • Lv S, Sylvestre M, Song K, et al. Development of d-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021;277:121076.
  • Raspantini GL, Luiz MT, Abriata JP, et al. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: development, physicochemical and biological characterization. Colloids Surf A Physicochem Eng Asp. 2021;627:127144.
  • Bigaj-Józefowska MJ, Grześkowiak BF. Polymeric nanoparticles wrapped in biological membranes for targeted anticancer treatment. Eur Polym J. 2022;176:111427.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578.
  • Krishnan A, Roy S, Menon S. Amphiphilic block copolymers: from synthesis including living polymerization methods to applications in drug delivery. Eur Polym J. 2022;172:111224.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–160.
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4(4):297–305.
  • Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes a new frontier in cancer chemotherapy. Tumori J. 2003;89(3):237–249.
  • Zhang L, Lin Z, Chen Y, et al. Co-delivery of docetaxel and resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer. Eur J Pharm Sci. 2022;174:106199.
  • d’Avanzo N, Torrieri G, Figueiredo P, et al. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm. 2021;597:120346.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids. 2020;165:104984.
  • Baker JR, Jr. Dendrimer-based nanoparticles for cancer therapy. Hematology, ASH Education Program. Ashpublications.Org; 2009.
  • Ybarra DE, Calienni MN, Ramirez LFB, et al. Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer. OpenNano. 2022;7:100053.
  • Lewińska A, Wróbel K, Błoniarz D, et al. Lapatinib- and fulvestrant-PAMAM dendrimer conjugates promote apoptosis in chemotherapy-induced senescent breast cancer cells with different receptor status. Biomater Adv. 2022;140:213047.
  • Pooresmaeil M, Namazi H, Salehi R. Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohydr Polym. 2020;246:116658.
  • Liu J, Li R, Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci. 2020;6(12):2179–2195.
  • Prabhakar AK, Ajith MP, Ananthanarayanan A, et al. Ball-milled graphene quantum dots for enhanced anti-cancer drug delivery. OpenNano. 2022;8:100072.
  • Campbell E, Hasan MT, Gonzalez-Rodriguez R, et al. Graphene quantum dot formulation for cancer imaging and redox-based drug delivery. Nanomedicine. 2021;37:102408.
  • Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76.
  • Akanda M, Getti G, Nandi U, et al. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. Int J Pharm. 2021;599:120416.
  • Granja A, Nunes C, Sousa CT, et al. Folate receptor-mediated delivery of mitoxantrone-loaded solid lipid nanoparticles to breast cancer cells. Biomed Pharmacother. 2022;154:113525.
  • Ahmed H, Gomte SS, Prathyusha V, et al. Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J Drug Deliv Sci Technol. 2022;76:103729.
  • Baeza A, Colilla M, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv. 2015;12(2):319–337.
  • Rosenholm JM, Sahlgren C, Linden M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets. 2011;12(8):1166–1186.
  • Amin MU, Ali S, Ali MY, et al. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. Eur J Pharm Biopharm. 2021;165:31–40.
  • Tonbul H, Sahin A, Tavukcuoglu E, et al. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. J Drug Deliv Sci Technol. 2021;63:102535.
  • Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–2953.
  • Kohane DS, Langer R. Biocompatibility and drug delivery systems. Chem Sci. 2010;1(4):441–446.
  • Naahidi S, Jafari M, Edalat F, et al. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013;166(2):182–194.
  • Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.
  • Nicolete R, Santos DFD, Faccioli LH. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol. 2011;11(10):1557–1563.
  • Jiang W, Gupta RK, Deshpande MC, et al. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev. 2005;57(3):391–410.
  • Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Singapore: Springer; 2019.
  • Akbari E, Mousazadeh H, Sabet Z, et al. Dual drug delivery of trapoxin a and methotrexate from biocompatible PLGA-PEG polymeric nanoparticles enhanced antitumor activity in breast cancer cell line. J Drug Deliv Sci Technol. 2021;61:102294.
  • Such GK, Yan Y, Johnston APR, et al. Interfacing materials science and biology for drug carrier design. Adv Mater. 2015;27(14):2278–2297.
  • Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–228.
  • Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41(7):2718–2739.
  • Locatelli E, Franchini MC. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J Nanopart Res. 2012;14(12):1316.
  • Lee YH, Chang DS. Fabrication, characterization, and biological evaluation of anti-HER2 indocyanine green-doxorubicinencapsulated PEG-b-PLGA copolymeric nanoparticles for targeted photochemotherapy of breast cancer cells. Sci Rep. 2017;7:46688.
  • Choudhury H, Gorain B, Pandey M, et al. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm. 2017;529(1–2):506–522.
  • Xing Y, Zhang J, Chen F, et al. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale. 2017;9(25):8781–8790.
  • Xiao MC, Chou YH, Hung YN, et al. Hybrid polymeric nanoparticles with high zoledronic acid payload and proton sponge-triggered rapid drug release for anticancer applications. Mater Sci Eng C Mater Biol Appl. 2020;116:111277.
  • Lale S. V, Kumar A, Naz F, et al. Multifunctional ATRP based pH responsive polymeric nanoparticles for improved doxorubicin chemotherapy in breast cancer by proton sponge effect/endo-lysosomal escape. Polym. Chem. 2015;6(11):2115–2132.
  • Wang HF, Liu Y, Wang T, et al. Tumor-microenvironment-on-a-chip for evaluating nanoparticle-loaded macrophages for drug delivery. ACS Biomater Sci Eng. 2020;6(9):5040–5050.
  • Stolnik S, Daudali B, Arien A, et al. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta Biomembr. 2001;1514(2):261–279.
  • Liu G, Jin Q, Liu X, et al. Biocompatible vesicles based on PEO-b-PMPC/α-cyclodextrin inclusion complexes for drug delivery. Soft Matter. 2011;7(2):662–669.
  • Yuhua H, Litwin T, Nagaraja AR, et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. 2007;7(10):3056–3064.
  • Wei P, Sun M, Yang B, et al. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J Control Release. 2020;322:81–94.
  • Salerno A, Domingo C, Saurina J. PCL foamed scaffolds loaded with 5-fluorouracil anti-cancer drug prepared by an eco-friendly route. Mater Sci Eng C Mater Biol Appl. 2017;75:1191–1197.
  • Pinzón-García AD, Sinisterra R, Cortes M, et al. Polycaprolactone nanofibers as an adjuvant strategy for tamoxifen release and their cytotoxicity on breast cancer cells. PeerJ. 2021;9:e12124.
  • Dhanka M, Shetty C, Srivastava R. Injectable methotrexate loaded polycaprolactone microspheres: physicochemical characterization, biocompatibility, and hemocompatibility evaluation. Mater Sci Eng C Mater Biol Appl. 2017;81:542–550.
  • Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104–120.
  • Han FY, Thurecht KJ, Whittaker AK, et al. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol. 2016;7:185.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–2490.
  • Jalil R, Nixon JR. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencapsul. 1990;7(3):297–325.
  • Jain RA, Rhodes CT, Railkar AM, et al. Controlled delivery of drugs from a novel injectable in situ formed biodegradable PLGA microsphere system. J Microencapsul. 2000;17(3):343–362.
  • Arzani H, Adabi M, Mosafer J, et al. Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells. Biointerface Res Appl Chem. 2019;9:4225–4231.
  • Wu J, Wang X, Li H, et al. A hollow chitosan-coated PLGA microsphere to enhance drug delivery and anticancer efficiency. J Drug Deliv Sci Technol. 2022;73:103482.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522.
  • Fonseca M, Macedo AS, Costa Lima SA, et al. Evaluation of the antitumour and antiproliferative effect of xanthohumol-loaded plga nanoparticles on melanoma. Materials. 2021;14(21):6421.
  • Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol. 2018;9:1260.
  • Kolhar P, Doshi N, Mitragotri S. Polymer nanoneedle-mediated intracellular drug delivery. Small. 2011;7(14):2094–2100.
  • Zhang B, Sai Lung P, Zhao S, et al. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep. 2017;7(1):7315.
  • Turecek PL, Bossard MJ, Schoetens F, et al. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci. 2016;105(2):460–475.
  • Elsewedy HS, Dhubiab BEA, Mahdy MA, et al. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv. 2020;27(1):1134–1146.
  • Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, et al. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm. 2021;600:120478.
  • Chen W, Hou Y, Tu Z, et al. pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. J Control Release. 2017;259:160–167.
  • Yang M, Lai SK, Yu T, et al. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol. J Control Release. 2014;192:202–208.
  • Khanna PK, Gokhale R, Subbarao V, et al. PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent. Mater Chem Phys. 2005;92(1):229–233.
  • Floyd JA, Galperin A, Ratner BD. Drug encapsulated polymeric microspheres for intracranial tumor therapy: a review of the literature. Adv Drug Deliv Rev. 2015;91:23–37.
  • Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29.
  • Hu SH, Liu DM, Tung WL, et al. Surfactant-free, self-assembled PVA-iron oxide/silica core-shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Adv Funct Mater. 2008;18(19):2946–2955.
  • Gursahani H, Riggs-Sauthier J, Pfeiffer J, et al. Absorption of polyethylene glycol (PEG) polymers: the effect of PEG size on permeability. J Pharm Sci. 2009;98(8):2847–2856.
  • Anwar M, Muhammad F, Akhtar B. Biodegradable nanoparticles as drug delivery devices. J Drug Deliv Sci Technol. 2021;64:102638.
  • Hakemi P, Ghadi A, Mahjoub S, et al. Fabrication of PCL-PEG-PCL nanocarrier for co-loading of docetaxel/quercetin and assessment of its effect on growth inhibition of human liver cancer (Hep-G2) cell line. Int J Nano Dimen. 2021;12(4):355–368.
  • Gou M, Wei X, Men K, et al. PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Curr Drug Targets. 2011;12(8):1131–1150.
  • Jin J, Sui B, Gou J, et al. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells. PLoS One. 2014;9(11):e112200.
  • Zamani M, Rostamizadeh K, Kheiri Manjili H, et al. In vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery. Eur Polym J. 2018;103:260–270.
  • Kheiri Manjili H, Sharafi A, Attari E, et al. Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL–PEG–PCL copolymeric-based micelles. Artif Cells Nanomed Biotechnol. 2017;45(8):1728–1739.
  • Manjili HK, Malvandi H, Mousavi MS, et al. In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif Cells Nanomed Biotechnol. 2018;46(5):926–936.
  • Musumeci T, Ventura CA, Giannone I, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–179.
  • Zhang Z, Feng SS. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials. 2006;27(2):262–270.
  • Sanna V, Roggio AM, Posadino AM, et al. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res Lett. 2011;6(1):260.
  • Chen W, Shen H, Li X, et al. Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34+ hematopoietic stem cells. Appl Surf Sci. 2006;253(4):1762–1769.
  • Luciani A, Coccoli V, Orsi S, et al. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials. 2008;29(36):4800–4807.
  • Yan E, Jiang J, Yang X, et al. pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Deliv Sci Technol. 2020;55:101455.
  • Yan E, Jiang J, Ren X, et al. Polycaprolactone/polyvinyl alcohol core-shell nanofibers as a pH-responsive drug carrier for the potential application in chemotherapy against colon cancer. Mater Lett. 2021;291:129516.
  • Balashanmugam P, Sucharithra GJ. Efficacy of biopolymeric PVA-AuNPs and PCL-curcumin loaded electrospun nanofibers and their anticancer activity against A431 skin cancer cell line. Mater Today Commun. 2020;25:101276.
  • Zhang Y, Luo S, Liang Y, et al. Synthesis, characterization, and property of biodegradable PEG-PCL-PLA terpolymers with miktoarm star and triblock architectures as drug carriers. J Biomater Appl. 2018;32(8):1139–1152.
  • Hernandez-Martinez AR, Molina GA, Esparza R, et al. Novel biocompatible and biodegradable PCL-PLA/iron oxide NPs marker clip composite for breast cancer biopsy. Polymers. 2018;10(12):1307.
  • Haroosh HJ, Dong Y, Lau KT. Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA: PCL nanofibre mats: experimental characterisation and release kinetics modelling. J Mater Sci. 2014;49(18):6270–6281.
  • Ma Y, Huang L, Song C, et al. Nanoparticle formulation of poly(e{open}-caprolactone-co-lactide)-d-α-tocopheryl polyethylene glycol 1000 succinate random copolymer for cervical cancer treatment. Polymer. 2010;51(25):5952–5959.
  • Cheng L, Yang K, Chen Q, et al. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano. 2012;6(6):5605–5613.
  • Shi H, Liu C, Jiang Q, et al. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater. 2015;1(4):1500017.
  • Yang B, Du J. On the origin and regulation of ultrasound responsiveness of block copolymer nanoparticles. Sci. China Chem. 2020;63(2):272–281.
  • Liu Y, Yang G, Jin S, et al. J‐aggregate‐based FRET monitoring of drug release from polymer nanoparticles with high drug loading. Angew Chem. 2020;132(45):20240–20249.
  • Huang P, Wang D, Su Y, et al. Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc. 2014;136(33):11748–11756.
  • Tahvilian R, Tajani B, Sadrjavadi K, et al. Preparation and characterization of pH-sensitive camptothecin-cis-aconityl grafted chitosan oligosaccharide nanomicelles. Int J Biol Macromol. 2016;92:795–802.
  • Kaldybekov DB, Filippov SK, Radulescu A, et al. Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery. Eur J Pharm Biopharm. 2019;143:24–34.
  • Zhang Y, Peng L, Chu J, et al. pH and redox dual-responsive copolymer micelles with surface charge reversal for co-delivery of all-trans-retinoic acid and paclitaxel for cancer combination chemotherapy. Int J Nanomed. 2018;13:6499–6515.
  • Karimi N, Soleiman-Beigi M, Fattahi A. Co-delivery of all-trans-retinoic acid and docetaxel in drug conjugated polymeric nanoparticles: improving controlled release and anticancer effect. Mater Today Commun. 2020;25:101280.
  • Liang TJ, Zhou ZM, Cao YQ, et al. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer. Int J Pharm. 2016;513(1–2):564–571.
  • Fessi H, Puisieux F, Devissaguet JP, et al. Rapid communication nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–R4.
  • Quintanar-Guerrero D, Allémann E, Fessi H, et al. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24(12):1113–1128.
  • Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75.
  • Boyd BJ. Past and future evolution in colloidal drug delivery systems. Expert Opin Drug Deliv. 2008;5(1):69–85.
  • Battaglia L, Gallarate M, Cavalli R, et al. Solid lipid nanoparticles produced through a coacervation method. J Microencapsul. 2010;27(1):78–85.
  • Kristl J, Struc E, Schara M, et al. Hydrocolloids and gels of chitosan as drug carriers. Int J Pharm. 1993;99(1):13–19.
  • Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69:443–447.
  • Caliceti P, Salmaso S, Elvassore N, et al. Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques. J Control Release. 2004;94(1):195–205.
  • Zhang H, Li G, Yang J, et al. Supercritical-derived artemisinin microfibers and microparticles for improving anticancer effects. J Supercrit Fluids. 2021;175:105276.
  • Nanotechnology Cancer Therapy and Treatment – NCI. https://www.cancer.gov/nano/cancer-nanotechnology/treatment
  • Jin C, Wang K, Oppong-Gyebi A, et al. Application of nanotechnology in cancer diagnosis and therapy – a mini-review. Int J Med Sci. 2020;17(18):2964–2973.
  • Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol Rev. 2014;3:111–122.
  • Trubetskoy VS. Polymeric micelles as carriers of diagnostic agents. Adv Drug Deliv Rev. 1999;37(1–3):81–88.
  • Haider M, Zaki KZ, el Hamshary MR, et al. Polymeric nanocarriers: a promising tool for early diagnosis and efficient treatment of colorectal cancer. J Adv Res. 2022;39:237–255.
  • Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces. 2014;6(24):21859–21873.
  • Ali I, Alsehli M, Scotti L, et al. Progress in polymeric nano-medicines for theranostic cancer treatment. Polymers. 2020;12(3):598.
  • Perumal V, Sivakumar PM, Zarrabi A, et al. Near infra-red polymeric nanoparticle based optical imaging in cancer diagnosis. J Photochem Photobiol B. 2019;199:111630.
  • Liu Y, Chen Z, Liu C, et al. Gadolinium-loaded polymeric nanoparticles modified with anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials. 2011;32(22):5167–5176.
  • Rezayan AH, Mousavi M, Kheirjou S, et al. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method. J Magn Magn Mater. 2016;420:210–217.
  • Kumar R, Ohulchanskyy TY, Roy I, et al. Near-infrared phosphorescent polymeric nanomicelles: efficient optical probes for tumor imaging and detection. ACS Appl Mater Interfaces. 2009;1(7):1474–1481.
  • El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–834.
  • Wang JH, Wang B, Liu Q, et al. Bimodal optical diagnostics of oral cancer based on rose bengal conjugated gold nanorod platform. Biomaterials. 2013;34(17):4274–4283.
  • Hirshberg A, Allon I, Novikov I, et al. Gold nanorods reflectance discriminate benign from malignant oral lesions. Nanomedicine. 2017;13(4):1333–1339.
  • Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198.
  • Pereira NRC, Loiola RA, Rodrigues SF, et al. Mechanisms of the effectiveness of poly(ε-caprolactone) lipid-core nanocapsules loaded with methotrexate on glioblastoma multiforme treatment. Int J Nanomed. 2018;13:4563–4573.
  • Ferreira LM, Azambuja JH, da Silveira EF, et al. Antitumor action of diphenyl diselenide nanocapsules: in vitro assessments and preclinical evidence in an animal model of glioblastoma multiforme. J Trace Elem Med Biol. 2019;55:180–189.
  • da Silveira EF, Ferreira LM, Gehrcke M, et al. 2-(2-Methoxyphenyl)-3-((piperidin-1-yl)ethyl)thiazolidin-4-one-loaded polymeric nanocapsules: in vitro antiglioma activity and in vivo toxicity evaluation. Cell Mol Neurobiol. 2019;39(6):783–797.
  • Ravikumara NR, Bharadwaj M, Madhusudhan B. Tamoxifen citrate-loaded poly(d,l) lactic acid nanoparticles: evaluation for their anticancer activity in vitro and in vivo. J Biomater Appl. 2016;31(5):755–772.
  • Khan I, Joshi G, Nakhate, Ajazuddin KT, et al. Nano-co-delivery of berberine and anticancer drug using PLGA nanoparticles: exploration of better anticancer activity and in vivo kinetics. Pharm Res. 2019;36(10):149.
  • Shetty A, Chandra S. Inorganic hybrid nanoparticles in cancer theranostics: understanding their combinations for better clinical translation. Mater Today Chem. 2020;18:100381.
  • Ekkapongpisit M, Giovia A, Follo C, et al. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups. Int J Nanomed. 2012;7:4147–4158.
  • Kim M, Jang J, Cha C. Carbon nanomaterials as versatile platforms for theranostic applications. Drug Discov Today. 2017;22(9):1430–1437.
  • Shahbazi R, Ozpolat B, Ulubayram K. Oligonucleotide-based theranostic nanoparticles in cancer therapy. Nanomedicine. 2016;11(10):1287–1308.
  • Baptista P, Fernandes A, Figueiredo S, et al. Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosens Dis Diagn. 2015;4:11.
  • Bansal S, Goel M, Aqil F, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4(8):1158–1171.
  • Massing U, Fuxius S. Liposomal formulations of anticancer drugs: selectivity and effectiveness. Drug Resist Updates. 2000;3(3):171–177.
  • Kaasgaard T, Andresen TL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv. 2010;7(2):225–243.
  • Sneider A, Vandyke D, Paliwal S, et al. Remotely triggered nano-theranostics for cancer applications. Nanotheranostics. 2017;1(1):1–22.
  • Choi K, Liu G, Lee S, et al. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 2012;4(2):330–342.
  • Ma YY, Jin KT, Wang SB, et al. Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media Mol Imaging. 2017;2017:1026270.
  • Zhong Y, Wang C, Cheng L, et al. Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. Biomacromolecules. 2013;14(7):2411–2419.
  • Zhao J, Zhou M, Li C. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nano. 2016;7(1):9.
  • Zhang X, Zheng Y, Wang Z, et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials. 2014;35(19):5148–5161.
  • Pant K, Sedláček O, Nadar RA, et al. Radiolabelled polymeric materials for imaging and treatment of cancer: quo vadis? Adv Healthc Mater. 2017;6(6):1601115.
  • Ding K, Jing L, Liu C, et al. Magnetically engineered cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials. 2014;35(5):1608–1617.
  • Park SM, Aalipour A, Vermesh O, et al. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater. 2017;2(5):1–20.
  • Yang H, Wang N, Yang R, et al. Folic acid-decorated β-cyclodextrin-based poly(ε-caprolactone)-dextran star polymer with disulfide bond-linker as theranostic nanoparticle for tumor-targeted mri and chemotherapy. Pharmaceutics. 2021;14(1):52.
  • Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–3070.
  • Chee CF, Leo BF, Lai CW. Superparamagnetic iron oxide nanoparticles for drug delivery. In: Inamuddin, Abdullah M. Asiri, Ali Mohammad, editors. Applications of nanocomposite materials in drug delivery. Duxford, UK: Elsevier; 2018. p. 861–903.
  • Laurent S, Saei AA, Behzadi S, et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11(9):1449–1470.
  • Panda J, Satapathy BS, Sarkar R, et al. A zinc ferrite nanodrug carrier for delivery of docetaxel: synthesis, characterization, and in vitro tests on C6 glioma cells. J Microencapsul. 2022;39(2):136–144.
  • Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine. 2007;2(5):669–680.
  • Simberg D, Duza T, Park JH, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA. 2007;104(3):932–936.
  • Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications a review. J Drug Target. 1998;6(3):167–174.
  • Bertorelle F, Wilhelm C, Roger J, et al. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir. 2006;22(12):5385–5391.
  • Jain TK, Morales MA, Sahoo SK, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm. 2005;2(3):194–205.
  • Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med. 2007;13(3):372–377.
  • Laurent S, Mahmoudi M. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int J Mol Epidemiology Genet. 2011;2(4):367.
  • Zhi D, Yang T, Yang J, et al. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020;102:13–34.
  • Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res. 2021;11(4):1323–1339.
  • Couture O, Foley J, Kassell NF, et al. Review of ultrasound mediated drug delivery for cancer treatment: updates from pre-clinical studies. Transl Cancer Res. 2014;3:494–511.
  • Zardad AZ, Choonara YE, Du Toit LC, et al. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polymers. 2016;8(10):359.
  • di Ianni T, Bose RJC, Sukumar UK, et al. Ultrasound/microbubble-mediated targeted delivery of anticancer microRNA-loaded nanoparticles to deep tissues in pigs. J Control Release. 2019;309:1–10.
  • Wang F, Dong L, Liang S, et al. Ultrasound-triggered drug delivery for glioma therapy through gambogic acid-loaded nanobubble-microbubble complexes. Biomed Pharmacother. 2022;150:113042.
  • Maghsoudinia F, Akbari-Zadeh H, Aminolroayaei F, et al. Ultrasound responsive Gd-DOTA/doxorubicin-loaded nanodroplet as a theranostic agent for magnetic resonance image-guided controlled release drug delivery of melanoma cancer. Eur J Pharm Sci. 2022;174:106207.
  • Frazier N, Payne A, de Bever J, et al. High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. J Control Release. 2016;241:186–193.
  • Ninomiya K, Yamashita T, Kawabata S, et al. Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer. Ultrason Sonochem. 2014;21(4):1482–1488.
  • Santra S, Malhotra A. Fluorescent nanoparticle probes for imaging of cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(5):501–510.
  • Santra S, Dutta D, Walter GA, et al. Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat. 2005;4(6):593–602.
  • Vollrath A, Schubert S, Schubert US. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles-a review. J Mater Chem B. 2013;1(15):1994–2007.
  • Li K, Liu B. Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging. J Mater Chem. 2012;22(4):1257–1264.
  • McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based sensory materials. Chem Rev. 2000;100:2537–2574.
  • Pu K-Y, Liu B. Bioimaging: fluorescent conjugated polyelectrolytes for bioimaging (Adv. Funct. Mater. 18/2011). Adv Funct Mater. 2011;21(18):3407.
  • He J, Li C, Ding L, et al. Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Adv. Mater. 2019;31(40):1902409.
  • Beguin F, Ehrburger P. Special issue on carbon nanotubes. Carbon. 2002;40(10):1619.
  • Liu Z, Tabakman S, Chen Z, et al. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc. 2009;4(9):1372–1381.
  • Kolosnjaj J, Szwarc H, Moussa F. Toxicity studies of carbon nanotubes. Adv Exp Med Biol. 2007;620:181–204.
  • Lee SJ, Huh MS, Lee SY, et al. Tumor-homing poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment. Angew Chem Int Ed Engl. 2012;51(29):7203–7207.
  • Gary D, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121(1–2):64–73.
  • Liu XQ, Sun CY, Yang XZ, et al. Polymeric-micelle-based nanomedicine for siRNA delivery. Part Part Syst Charact. 2013;30(3):211–228.
  • Lee S, Huh M, Lee S, et al. Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J Control Release. 2010;141(3):339–346.
  • Yang J, Li S, Guo F, et al. Induction of apoptosis by chitosan/HPV16 E7 siRNA complexes in cervical cancer cells. Mol Med Rep. 2013;7(3):998–1002.
  • Biswas S, Torchilin VP. Dendrimers for siRNA delivery. Pharmaceuticals. 2013;6(2):161–183.
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–2237.
  • Wu J, Huang W, He Z. Dendrimers as carriers for siRNA delivery and gene silencing: a review. Sci World J. 2013;2013:630654.
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782.
  • Schrand AM, Rahman MF, Hussain SM, et al. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):544–568.
  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–1671.
  • Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer (review). Biomed Rep. 2016;5(4):395–402.
  • Zheng B, Chen L, Pan CC, et al. Targeted delivery of miRNA-204-5p by PEGylated polymer nanoparticles for colon cancer therapy. Nanomedicine. 2018;13(7):769–785.
  • Lopez-Bertoni H, Kozielski KL, Rui Y, et al. Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell regulating miRNAs inhibit glioblastoma growth and prolong survival. Nano Lett. 2018;18(7):4086–4094.
  • Moraes FC, Pichon C, Letourneur D, et al. Mirna delivery by nanosystems: state of the art and perspectives. Pharmaceutics. 2021;13(11):1901.
  • Ahir M, Upadhyay P, Ghosh A, et al. Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomater Sci. 2020;8(10):2939–2954.
  • Magalhães M, Almeida M, Tavares-da-Silva E, et al. miR-145-loaded micelleplexes as a novel therapeutic strategy to inhibit proliferation and migration of osteosarcoma cells. Eur J Pharm Sci. 2018;123:28–42.
  • Conte R, Valentino A, di Cristo F, et al. Cationic polymer nanoparticles-mediated delivery of mir-124 impairs tumorigenicity of prostate cancer cells. Int J Mol Sci. 2020;21(3):869.
  • Tu L, Wang M, Zhao WY, et al. miRNA-218-loaded carboxymethyl chitosan – tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth. Mater Sci Eng C Mater Biol Appl. 2017;72:177–184.
  • Sharma S, Pukale S, Sahel DK, et al. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. Mater Sci Eng C Mater Biol Appl. 2021;128:112305.
  • Zhou Z, Kennell C, Lee JY, et al. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine. 2017;13(2):403–410.
  • Liu Y, Zheng M, Jiao M, et al. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials. 2021;276:121036.
  • Chan C, Guo N, Duan X, et al. Systemic miRNA delivery by nontoxic nanoscale coordination polymers limits epithelial-to-mesenchymal transition and suppresses liver metastases of colorectal cancer. Biomaterials. 2019;210:94–104.
  • Wu W, Hu Q, Wang M, et al. A PEGylated megamer-based microRNA delivery system activatable by stepwise microenvironment stimulation. Chem Commun. 2019;55(63):9363–9366.
  • Deng X, Cao M, Zhang J, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials. 2014;35(14):4333–4344.
  • Panebianco F, Climent M, Malvindi MA, et al. Delivery of biologically active miR-34a in normal and cancer mammary epithelial cells by synthetic nanoparticles. Nanomedicine. 2019;19:95–105.
  • Song Z, Liang X, Wang Y, et al. Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer. Biomater Sci. 2019;7(4):1632–1642.
  • Indoria S, Singh V, Hsieh MF. Recent advances in theranostic polymeric nanoparticles for cancer treatment: a review. Int J Pharm. 2020;582:119314.
  • Arranja AG, Pathak V, Lammers T, et al. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87–95.
  • Ting G, Chang CH, Wang HE, et al. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol. 2010;2010:1–17.
  • Hamoudeh M, Kamleh MA, Diab R, et al. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev. 2008;60(12):1329–1346.
  • Hamoudeh M, Salim H, Barbos D, et al. Preparation and characterization of radioactive dirhenium decacarbonyl-loaded PLLA nanoparticles for radionuclide intra-tumoral therapy. Eur J Pharm Biopharm. 2007;67(3):597–611.
  • Mitra A, Nan A, Line BR, et al. Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr Pharm Des. 2006;12(36):4729–4749.
  • Chunfu Z, Jinquan C, Duanzhi Y, et al. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy. Appl Radiat Isot. 2004;61(6):1255–1259.
  • Almeida JPM, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine. 2014;10(3):503–514.
  • Li S, Feng X, Wang J, et al. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res. 2018;11(11):5769–5786.
  • Sun B, Xia T. Nanomaterial-based vaccine adjuvants. J Mater Chem B. 2016;4(33):5496–5509.
  • Serda RE. Particle platforms for cancer immunotherapy. Int J Nanomed. 2013;8:1683–1696.
  • Xie YQ, Wei L, Tang L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:e1506.
  • Sau S, Alsaab HO, Bhise K, et al. Multifunctional nanoparticles for cancer immunotherapy: a groundbreaking approach for reprogramming malfunctioned tumor environment. J Control Release. 2018;274:24–34.
  • Ni J, Song J, Wang B, et al. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother. 2020;126:110046.
  • Thigpen MC, Kebaabetswe PM, Paxton LA, et al. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med. 2012;367(5):423–434.
  • Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–2121.
  • Goldsmith SJ. Radioimmunotherapy of lymphoma: bexxar and zevalin. Semin Nucl Med. 2010;40(2):122–135.
  • Bonvalot S, Le Pechoux C, de Baere T, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res. 2017;23(4):908–917.
  • Debele TA, Yeh CF, Su WP. Cancer immunotherapy and application of nanoparticles in cancers immunotherapy as the delivery of immunotherapeutic agents and as the immunomodulators. Cancers. 2020;12(12):3773–3724.
  • Liu G, Franssen E, Fitch MI, et al. Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol. 1997;15(1):110–115.
  • Borner MM, Schöffski PS, de Wit R, et al. Patient preference and pharmacokinetics of oral modulated UFT versus intravenous fluorouracil and leucovorin: a randomised crossover trial in advanced colorectal cancer. Eur J Cancer. 2002;38(3):349–358.
  • Des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.
  • Tang BC, Dawson M, Lai SK, et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA. 2009;106(46):19268–19273.
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–171.
  • Mahmood A, Lanthaler M, Laffleur F, et al. Thiolated chitosan micelles: highly mucoadhesive drug carriers. Carbohydr Polym. 2017;167:250–258.
  • Shrestha N, Araújo F, Shahbazi MA, et al. Thiolation and cell-penetrating peptide surface functionalization of porous silicon nanoparticles for oral delivery of insulin. Adv Funct Mater. 2016;26(20):3405–3416.
  • Desai MP, Labhasetwar V, Amidon GL, et al. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–1845.
  • Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res. 1997;14:259–266.
  • Feng QP, Zhu YT, Yuan YZ, et al. Oral administration co-delivery nanoparticles of docetaxel and bevacizumab for improving intestinal absorption and enhancing anticancer activity. Mater Sci Eng C Mater Biol Appl. 2021;124:112039.
  • Katiyar SS, Muntimadugu E, Rafeeqi TA, et al. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016;23(7):2608–2616.
  • Yee YJ, Benson HAE, Dass CR, et al. Evaluation of novel conjugated resveratrol polymeric nanoparticles in reduction of plasma degradation, hepatic metabolism and its augmentation of anticancer activity in vitro and in vivo. Int J Pharm. 2022;615:121499.
  • Schönbeck C, Gaardahl K, Houston B. Drug solubilization by mixtures of cyclodextrins: additive and synergistic effects. Mol Pharm. 2019;16(2):648–654.
  • Sadaquat H, Akhtar M, Nazir M, et al. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: in vivo toxicity evaluation. Int J Pharm. 2021;598:120363.
  • Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–295.
  • Yadav HKS, Almokdad AA, Shaluf SIM, et al. Polymer-based nanomaterials for drug-delivery carriers. In: Mohapatra SS, Ranjan S, Dasgupta N, et al., editors. Nanocarriers for drug delivery: nanoscience and nanotechnology in drug delivery. Amsterdam, Netherlands: Elsevier Science Ltd.; 2018. p. 531–556.
  • Palazzolo S, Bayda S, Hadla M, et al. The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem. 2018;25(34):4224–4268.
  • Calzoni E, Cesaretti A, Polchi A, et al. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019;10(1):4–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.