57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oxidized sodium alginate hydrogel-mouse nerve growth factor sustained release system promotes repair of peripheral nerve injury

, , , , , , , , & show all
Received 24 Jul 2023, Accepted 02 Apr 2024, Published online: 17 Apr 2024

References

  • Ülger M, Sezer G, Özyazgan İ, et al. The effect of erythropoietin and umbilical cord-derived mesenchymal stem cells on nerve regeneration in rats with sciatic nerve injury. J Chem Neuroanat. 2021;114:101958. doi:10.1016/j.jchemneu.2021.101958.
  • Kang MS, Lee GH, Choi GE, et al. Neuroprotective effect of nypa fruticans wurmb by suppressing TRPV1 following sciatic nerve crush injury in a rat. Nutrients. 2020;12(9):2618. doi:10.3390/nu12092618.
  • Rodríguez Sánchez DN, de Lima Resende LA, Boff Araujo Pinto G, et al. Canine adipose-derived mesenchymal stromal cells enhance neuroregeneration in a rat model of sciatic nerve crush injury. Cell Transplant. 2019;28(1):47–54. doi:10.1177/0963689718809045.
  • Chen Q, Liu Q, Zhang Y, et al. Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration. Cell Death Dis. 2021;12(5):417. doi:10.1038/s41419-021-03706-8.
  • Sun Y, Zhu X, Hou J, et al. Effects of mouse nerve growth factor in treating cerebral injury in acute period caused by cerebral hemorrhage. Saudi J Biol Sci. 2020;27(10):2701–2705. doi:10.1016/j.sjbs.2020.06.017.
  • Zhuang CY, Hu AN, Jiang YQ, et al. The clinical effect of a combination of mouse nerve growth factor and methylcobalamin to treat lumbar disc herniation with foot drop: a retrospective cohort study. Orthop Surg. 2021;13(5):1602–1608. doi:10.1111/os.13014.
  • Xu L, Li Y, Shi X, et al. Expression, purification, and characterization of recombinant mouse nerve growth factor in Chinese hamster ovary cells. Protein Expr Purif. 2014;104:41–49. doi:10.1016/j.pep.2014.09.007.
  • Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev. 2021;171:240–256. doi:10.1016/j.addr.2021.02.002.
  • Palmese LL, Fan M, Scott RA, et al. Kiick, multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery. J Biomater Sci Polym Ed. 2021;32(5):635–656. doi:10.1080/09205063.2020.1855392.
  • Jiang L, Xu D, Sellati TJ, et al. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity. Nanoscale. 2015;7(45):19160–19169., doi:10.1039/c5nr05233e.
  • Appel EA, Loh XJ, Jones ST, et al. Scherman, sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials. 2012;33(18):4646–4652. doi:10.1016/j.biomaterials.2012.02.030.
  • Jahanban-Esfahlan R, Derakhshankhah H, Haghshenas B, et al. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int J Biol Macromol. 2020;156:438–445. doi:10.1016/j.ijbiomac.2020.04.074.
  • Zhao Y, Wang Y, Niu C, et al. Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. J Biomed Mater Res A. 2018;106(7):1951–1964. doi:10.1002/jbm.a.36393.
  • Mousavi A, Mashayekhan S, Baheiraei N, et al. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol. 2021;180:692–708. doi:10.1016/j.ijbiomac.2021.03.097.
  • Emami Z, Ehsani M, Zandi M, et al. Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydr Polym. 2018;198:509–517. doi:10.1016/j.carbpol.2018.06.080.
  • Zhao J, Wang R, Zhang J, et al. A novel 4D cell culture mimicking stomach peristalsis altered gastric cancer spheroids growth and malignance. Biofabrication. 2021;13(3):035034. doi:10.1088/1758-5090/abf6bf.
  • Chen W, Ji L, Wei Z, et al. miR-146a-3p suppressed the differentiation of hAMSCs into Schwann cells via inhibiting the expression of ERBB2. Cell Tissue Res. 2021;384(1):99–112. doi:10.1007/s00441-020-03320-8.
  • Yu F, Yuan Y, Xu H, et al. Neutrophil peptide-1 promotes the repair of sciatic nerve injury through the expression of proteins related to nerve regeneration. Nutr Neurosci. 2022;25(3):631–641. doi:10.1080/1028415X.2020.1792617.
  • Rice AJ, Cortes E, Lachowski D, et al. Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis. 2017;6(7):e352. doi:10.1038/oncsis.2017.54.
  • Béduer A, Genta M, Kunz N, et al. Design of an elastic porous injectable biomaterial for tissue regeneration and volume retention. Acta Biomater. 2022;142:73–84. doi:10.1016/j.actbio.2022.01.050.
  • Sencar L, Coşkun G, Şaker D, et al. Effects of theranekron and alpha-lipoic acid combined treatment on GAP-43 and krox-20 gene expressions and inflammation markers in peripheral nerve injury. Ultrastruct Pathol. 2021;45(3):167–181. doi:10.1080/01913123.2021.1923600.
  • Wang Y, Wang X, Montclare JK. Free-Standing photocrosslinked protein polymer hydrogels for sustained drug release. Biomacromolecules. 2021;22(4):1509–1522. doi:10.1021/acs.biomac.0c01721.
  • Diao YP, Cui FK, Yan S, et al. Nerve growth factor promotes angiogenesis and skeletal muscle fiber remodeling in a murine model of hindlimb ischemia. Chin Med J (Engl). 2016;129(3):313–319. doi:10.4103/0366-6999.174496.
  • Lee JH, Tachibana T, Yamana K, et al. Simple formation of cancer drug-containing self-assembled hydrogels with temperature and pH-responsive release. Langmuir. 2021;37(38):11269–11275. doi:10.1021/acs.langmuir.1c01700.
  • Rahmati M, Ehterami A, Saberani R, et al. Improving sciatic nerve regeneration by using alginate/chitosan hydrogel containing berberine. Drug Deliv Transl Res. 2021;11(5):1983–1993. doi:10.1007/s13346-020-00860-y.
  • Ahmed EM. Hydrogel: Preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–121. doi:10.1016/j.jare.2013.07.006.
  • Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: a literature review. J Tissue Eng Regen Med. 2021;15(4):299–321. doi:10.1002/term.3172.
  • Ma X, Wang M, Ran Y, et al. Design and fabrication of polymeric hydrogel carrier for nerve repair. Polymers (Basel). 2022;14(8):1549. doi:10.3390/polym14081549.
  • Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4):042001. doi:10.1088/1758-5090/ab331e.
  • Kashyap N, Kumar N, Kumar MR. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst. 2005;22(2):107–149. doi:10.1615/critrevtherdrugcarriersyst.v22.i2.10.
  • Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016;21(11):1835–1849. doi:10.1016/j.drudis.2016.07.006.
  • Ullah F, Othman MB, Javed F, et al. Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl. 2015;57:414–433. doi:10.1016/j.msec.2015.07.053.
  • Niu B, Jia J, Wang H, et al. In vitro and in vivo release of diclofenac sodium-loaded sodium alginate/carboxymethyl chitosan-ZnO hydrogel beads. Int J Biol Macromol. 2019;141:1191–1198., doi:10.1016/j.ijbiomac.2019.09.059.
  • Kleindienst A, Ross Bullock M. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma. 2006;23(8):1185–1200. doi:10.1089/neu.2006.23.1185.
  • Onose G, Anghelescu A, Muresanu DF, et al. A review of published reports on neuroprotection in spinal cord injury. Spinal Cord. 2009;47(10):716–726. doi:10.1038/sc.2009.52.
  • Usach V, Goitia B, Lavalle L, et al. Bone marrow mononuclear cells migrate to the demyelinated sciatic nerve and transdifferentiate into Schwann cells after nerve injury: attempt at a peripheral nervous system intrinsic repair mechanism. J Neurosci Res. 2011;89(8):1203–1217. doi:10.1002/jnr.22645.
  • Zhao Z, Li X, Li Q. Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization. Biomed Pharmacother. 2017;92:1103–1110. doi:10.1016/j.biopha.2017.05.099.
  • Thamizhoviya G, Vanisree AJ. Enriched environment modulates behavior, myelination and augments molecules governing the plasticity in the forebrain region of rats exposed to chronic immobilization stress. Metab Brain Dis. 2019;34(3):875–887. doi:10.1007/s11011-018-0370-8.
  • Guo JR, Wang H, Jin XJ, et al. Effect and mechanism of inhibition of PI3K/Akt/mTOR signal pathway on chronic neuropathic pain and spinal microglia in a rat model of chronic constriction injury. Oncotarget. 2017;8(32):52923–52934. doi:10.18632/oncotarget.17629.
  • Li R, Li DH, Zhang HY, et al. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin. 2020;41(10):1289–1300. doi:10.1038/s41401-019-0338-1.
  • Wu Z, Xie S, Kang Y, et al. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Mater Sci Eng C Mater Biol Appl. 2021;129:112393. doi:10.1016/j.msec.2021.112393.
  • Song K, Yang Y, Li S, et al. In vitro culture and oxygen consumption of NSCs in size-controlled neurospheres of Ca-alginate/gelatin microbead. Mater Sci Eng C Mater Biol Appl. 2014;40:197–203. doi:10.1016/j.msec.2014.03.028.
  • Khosravizadeh Z, Razavi S, Bahramian H, et al. The beneficial effect of encapsulated human adipose-derived stem cells in alginate hydrogel on neural differentiation. J Biomed Mater Res B Appl Biomater. 2014;102(4):749–755. doi:10.1002/jbm.b.33055.
  • Samir R, Hassan EA, Saber AA, et al. Seaweed Sargassum aquifolium extract ameliorates cardiotoxicity induced by doxorubicin in rats. Environ Sci Pollut Res Int. 2023;30(20):58226–58242. doi:10.1007/s11356-023-26259-z.
  • Gholami M, Gilanpour H, Sadeghinezhad J, et al. Facile fabrication of an erythropoietin-alginate/chitosan hydrogel and evaluation of its local therapeutic effects on spinal cord injury in rats. Daru. 2021;29(2):255–265. doi:10.1007/s40199-021-00399-4.
  • Deng B, Shen L, Wu Y, et al. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J Biomed Mater Res A. 2015;103(3):907–918. doi:10.1002/jbm.a.35232.
  • Lv K, Li Q, Zhang L, et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics. 2019;9(24):7403–7416. doi:10.7150/thno.32637.
  • Saleh EM, Hamdy GM, Hassan RE. Neuroprotective effect of sodium alginate against chromium-induced brain damage in rats. PLoS One. 2022;17(4):e0266898. doi:10.1371/journal.pone.0266898.
  • Park K, Shin Y, Lee G, et al. Dabrafenib promotes Schwann cell differentiation by inhibition of the MEK-ERK pathway. Molecules. 2021;26(8):2141. doi:10.3390/molecules26082141.
  • Saiki T, Nakamura N, Miyabe M, et al. The effects of insulin on immortalized rat Schwann cells, IFRS1. Int J Mol Sci. 2021;22(11):5505. doi:10.3390/ijms22115505.
  • Wang H, Qu F, Xin T, et al. Ginsenoside compound K promotes proliferation, migration and differentiation of Schwann cells via the activation of MEK/ERK1/2 and PI3K/AKT pathways. Neurochem Res. 2021;46(6):1400–1409. doi:10.1007/s11064-021-03279-0.
  • Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: crosstalk and compensation. Trends Biochem Sci. 2011;36(6):320–328. doi:10.1016/j.tibs.2011.03.006.
  • Ren ZX, Xu JH, Cheng X, et al. Pathophysiological mechanisms of chronic compressive spinal cord injury due to vascular events. Neural Regen Res. 2023;18(4):790–796. doi:10.4103/1673-5374.353485.
  • Pang QM, Chen SY, Xu QJ, et al. Neuroinflammation and scarring after spinal cord injury: therapeutic roles of MSCs on inflammation and glial scar. Front Immunol. 2021;12:751021. doi:10.3389/fimmu.2021.751021.
  • Xiao S, Zhang F, Zheng Y, et al. Synergistic effect of nanofat and mouse nerve-growth factor for promotion of sensory recovery in anterolateral thigh free flaps. Stem Cells Transl Med. 2021;10(2):181–189. doi:10.1002/sctm.20-0226.
  • An S, Jia Y, Tian Y, et al. Mouse nerve growth factor promotes neurological recovery in patients with acute intracerebral hemorrhage: a proof-of-concept study. J Neurol Sci. 2020;418:117069. doi:10.1016/j.jns.2020.117069.
  • Thompson RE, Pardieck J, Smith L, et al. Effect of hyaluronic acid hydrogels containing astrocyte-derived extracellular matrix and/or V2a interneurons on histologic outcomes following spinal cord injury. Biomaterials. 2018;162:208–223. doi:10.1016/j.biomaterials.2018.02.013.
  • Lu J, Guan F, Cui F, et al. Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. Regen Biomater. 2019;6(6):325–334. doi:10.1093/rb/rbz027.
  • Li S, Li L, Guo C, et al. A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: strontium loaded silk fibroin/sodium alginate (SF/SA) blend films. Int J Biol Macromol. 2017;104(Pt A):969–978. doi:10.1016/j.ijbiomac.2017.07.020.
  • Azarpira N, Kaviani M, Sarvestani FS. Incorporation of VEGF-and bFGF-loaded alginate oxide particles in acellular collagen-alginate composite hydrogel to promote angiogenesis. Tissue Cell. 2021;72:101539. doi:10.1016/j.tice.2021.101539.
  • Feng X, Zhang X, Li S, et al. Preparation of aminated fish scale collagen and oxidized sodium alginate hybrid hydrogel for enhanced full thickness wound healing. Int J Biol Macromol. 2020;164:626–637. doi:10.1016/j.ijbiomac.2020.07.058.
  • He Y, Li Y, Sun Y, et al. A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr Polym. 2021;261:117870. doi:10.1016/j.carbpol.2021.117870.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.