267
Views
9
CrossRef citations to date
0
Altmetric
Invited Review

Power management for spectrum sharing in cognitive radio communication system: a comprehensive survey

& ORCID Icon
Pages 407-461 | Received 26 Sep 2019, Accepted 12 Jan 2020, Published online: 29 Jan 2020

References

  • Federal Communications Commission. Notice of proposed rulemaking and order: Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. ET Docket No. 03-108, Feb 2002.
  • Mitola J, Maguire GQJ. Cognitive radio: making software radios more personal. IEEE Pers Commun Mag. 1999 Aug;6(4):13–18.
  • Xin C, Paul P, Song M, et al. On dynamic spectrum allocation in geo-location spectrum sharing systems. IEEE Trans Mob Comput. 2019 Apr;18(4):923–933.
  • Jeon J, Ford RD, Ratnam VV, et al. Coordinated dynamic spectrum sharing for 5G and beyond cellular networks. IEEE Access. 2019 Aug;7:111592–111604.
  • Akyildiz IF, Lee W-Y, Vuran MC, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput Networks. 2006 Sep;50(13):2127–2159.
  • Thakur P, Singh G, Satashia SN. Spectrum sharing in cognitive radio communication system using power constraints: a technical review. Perspect Sci. 2016 Sep;8:651–653.
  • Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutorials. 2009;11(1):116–130.
  • Akyildiz IF, Lee WY, Varun MC, et al. A survey on spectrum management in cognitive radio networks. IEEE Commun Mag. 2008 Apr;46(4):40–48.
  • Akyildiz IF, Lo BF, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks: a survey. Phys Commun. 2011 Mar;4(1):40–62.
  • Cristian I, Moh S, Chung I, et al. Spectrum mobility in cognitive radio networks. IEEE Commun Mag. 2012 Jun;50(6):114–121.
  • Thakur P, Kumar A, Pandit S, et al. Spectrum mobility in cognitive radio network using spectrum prediction and monitoring techniques. Phys Commun. 2017 Sep;24:1–8.
  • Kumar K, Prakash A, Tripathi R. Spectrum handoff in cognitive radio networks: a classification and comprehensive survey. J Network Comput Appl. 2016 Feb;61:161–188.
  • Dudley SM, Headley WC, Lichtman M, et al. Practical issues for spectrum management with cognitive radios. IEEE Proc. 2014 Mar;102(3):242–264.
  • President’s Council of Advisors on Science and Technology, Report to the President realizing the full potential of government-held spectrum to spur economic growth; Jul 2012.
  • European Parliament, Decision No 243/1012/EU of the European Parliament and the Council of 14 March 2012 establishing a multiannual radio spectrum policy programme, Strasbourg, France, 243/2012/EU; 2012.
  • Buddhikot MM. Understanding dynamic spectrum access: Models, taxonomy and challenges. Proceedings of the 2nd IEEE International Symposium on New Frontiers of Dynamic Spectrum Access Networks; 2007. p. 649–663.
  • U.S. Federal Communications Commission, Enabling innovative small cell use in 3.5 GHz band NPRM & order; 2012.
  • Wang B, Liu KJR. Advances in cognitive radio networks: a survey. IEEE J Sel Areas Commun. 2011 Feb;11(1):5–23.
  • Xu Y, Zhao X, Liang Y-C. Robust power control and beamforming in cognitive in radio networks: a survey. IEEE Commun Surv Tutorials. 2015;17(4):1834–1857.
  • Naeem M, Anpalagan A, Jaseemuddin M, et al. Resource allocation techniques in cooperative cognitive radio networks. IEEE Commun Survey Tutorials. 2014;16(2):729–744.
  • Ahmed E, Gani A, Abolfazli S, et al. Channel assignment algorithms in cognitive radio networks: taxonomy, open issues, and challenges. IEEE Commun Surv Tutorials. 2016;18(1):795–823.
  • Tanab ME, Hamouda W. Resource allocation for underlay cognitive radio networks: a survey. IEEE Commun Survey Tutorials. 2017;19(2):1249–1276.
  • Hu F, Chen B, Zhu K. Full spectrum sharing in cognitive radio networks toward 5G: a survey. IEEE Access. 2018 Feb;6:15754–15776.
  • Kour H, Jha RK, Jainb S. A comprehensive survey on spectrum sharing: architecture, energy efficiency and security issues. J Networking Comput Appl. 2018 Feb;103(1):29–57.
  • Sharma SK, Bogale TE, Le LB, et al. Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: recent advances and research challenges. IEEE Commun Tutorials. 2018;20(1):674–707.
  • Hossain E, Niyato D, Han Z. Dynamic spectrum access and management in cognitive radio networks. New York: Cambridge University Press; 2009.
  • Thakur P, Kumar A, Pandit S, et al. Spectrum monitoring in heterogeneous cognitive radio network: How to cooperate? IET Commun. 2018 Oct;12(17):2110–2118.
  • Thakur P, Singh G. Energy and spectral efficient SMC-MAC protocol in distributed cognitive radio networks. IET Commun. 2019 Jun:2110–2118. doi:10.1049/iet-com.2019.0212.
  • Zheng H, Cao L. Device-centric spectrum management. Proceedings of the IEEE Symposium on New Frontiers of Dynamic Spectrum Access Networks (DySPAN), Baltimore (MD); Nov 2005. p. 56–65.
  • Sharma SK, Bhogle TE, Le LB, et al. Cognitive radio techniques under practical imperfections: a survey. IEEE Commun Surveys Tutorials. 2015;17(4):1858–1884.
  • Wyglinski AM, Nekovee M, Hou T. Cognitive radio communications and networks. Boston (MA): Academic Press; 2010.
  • Thakur P, Kumar A, Pandit S, et al. Performance analysis of cognitive radio networks using channel-prediction-probabilities and improved frame structure. Digital Commun Netw. 2018 Nov;4(4):287–295.
  • Thakur P, Kumar A, Pandit S, et al. Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques. Wireless Netw. 2018 Aug;24(6):2005–2015.
  • Ban TW, Choi W, Jung BC, et al. Multi-user diversity in a spectrum sharing system. IEEE Trans Wireless Commun. 2009 Jan;8(1):102–106.
  • Establishment of an interference temperature metric to quantify and manage interference and to expand available unlicensed operation in certain fixed, mobile and satellite frequency bands. Federal Communication Commission (FCC), Washington (DC); ET Docket 0.-289; 2003.
  • Goldsmith A, Jafar SA, Maric I, et al. Breaking spectrum gridlock with cognitive radios: a n information theoretic perspective. Proc IEEE. 2009 May;97(5):894–914.
  • Costa M. Writing on dirty paper (corresp.). IEEE Trans Inf Theory. 1983 May;29(3):439–441.
  • Gel’fand SI, Pinsker MS. Problems of control and information theory. Coding Channel Random Parameters. 1980;9(1):19–31.
  • Sharma SK, Chatzinotas S, Ottersten B. A hybrid cognitive transceiver architecture: sensing throughput tradeoff. Proc. Cognitive Radio Wireless Networks and Communications (CROWNCOM), Oulu, Finland; Jun 2014. p. 143–149.
  • Jiang X, Wang KK, Zang Y, et al. On hybrid overlay-underlay dynamic spectrum access: double-threshold energy detection and Markov model. IEEE Trans Veh Technol. 2013 Apr;62(8):4078–4083.
  • Chu TMC, Phan H, Japernick H-J. Hybrid interweave-underlay spectrum access for cognitive radio networks. IEEE Trans Commun. 2014 Jul;62(7):2183–2197.
  • Serrano RB, Thombaben R, Jorswieck E, et al. Comparison of underlay and overlay spectrum sharing strategies in MISO cognitive channels. Proceedings of the Cognitive Radio Oriented Wireless Networks And Communications (CROWNCOM), Stockholm; Jun 2012. p. 224–229.
  • Thakur P, Kumar A, Pandit S, et al. Frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. Proceedings of the IEEE International Conference on Contemporary Computing (IC-3), India; Aug 2016. p. 1–6.
  • Thakur P, Kumar A, Pandit S, et al. Advanced frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. IEEE Commun Lett. 2017;21(1):410–413.
  • Chengquan A, Yang L. A matching game algorithm for spectrum allocation based on POMDP model. Proceedings of the IEEE International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Wuhan, China; Sep 2011. p. 1–3.
  • Niyato D, Hossain E. A game-theoretic approach to competitive spectrum sharing in cognitive radio Networks. Proceedings of the Wireless Communications and Networking Conference (WCNC), Kowloon, Hong-Kong; Mar 2007. p. 16–20.
  • Sharma S, Teneketzis D. A game theoretic approach to decentralized optimal power allocation for cellular networks. Telecommun Syst. 2011 Jun;47:65–80.
  • Li H, Gou Q, Tang T, et al. Distributed resource allocation for cognitive radio network with imperfect spectrum sensing. Proceedings of the 78th Vehicular Technology (VTC fall), Las Vegas (NV); Sep 2013. p. 1–6.
  • Ektin R, Parekh A, Tse D. Spectrum sharing for unlicensed bands. IEEE J Sel Areas Commun. 2007 Apr;25(3):517–528.
  • Zhou P, Yuan W, Liu W, et al. Joint power and rate control in cognitive radio networks: A game-theoretical approach. Proceedings of the IEEE International Conference on Communications, Beijing; May 2008. p. 3926–3301.
  • Attar A, Mohammad Reza N, Hamid AA. Cognitive radio game for secondary spectrum access problem. IEEE Trans Wireless Commun. 2009 Apr;8(4):2121–2131.
  • Ni Q, Zarakovitis CC. Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems. IEEE J Sel Areas Commun. 2012 Jan;30(1):70–81.
  • Liu Y, Dong L. Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory. IEEE Trans Wireless Commun. 2014 Sep;13(9):4807–4820.
  • Zhang H, Jiang C, Beaulieu N, et al. Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Trans Wireless Commun. 2015 Jun;14(6):3481–3493.
  • Lin F, Zhou X, Lu X, et al. Novel pre-pushing scheme for peer-assisted streaming network based on multi-leader multi-follower stackelberg model. Wireless Pers Commun. 2015 Jan;80(1):289–301.
  • Shafigh AS, Mertikopoulos P, Glisic S, et al. Semi-cognitive radio networks: a novel dynamic spectrum sharing mechanism. IEEE Trans Cognitive Commun Networking. 2017 Mar;3(1):97–111.
  • Roy A, Midya S, Majumder K, et al. Optimized secondary user selection for quality of service enhancement of two-tier multi-user cognitive radio network: a game theoretic approach. Comput Networks. 2017 Aug;123(4):1–18.
  • Ni Q, Zhu R, Wu Z, et al. Spectrum allocation based on game theory in cognitive radio networks. J Networks. 2013 Mar;8(3):712–722.
  • Li D, Xu Y, Wang X, et al. Coalitional game theoretic approach for secondary spectrum access in cooperative cognitive radio networks. IEEE Trans Wireless Commun. 2011 Mar;10(3):844–856.
  • Wang H, Gao L, Gan X, et al. Cooperative spectrum sharing in cognitive radio networks: a game-theoretic approach. Proceedings of the International Conference on Communications (ICC), Cape Town; May 2010. p. 1–5.
  • Omidvar N, Khalaj BH. A game theoretic approach for power allocation in the downlink of cognitive radio networks. Proceedings of the IEEE Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Kyoto; Jun 2012. p. 158-162.
  • Huang J, Berry R, Honig ML. Auction-based spectrum sharing. Mob Networks Appl. 2006 Jun;11(3):405–418.
  • Wang B, Han Z, Liu KJ. Distributed relay selection and power control for multiuser cooperative communication networks using buyer/seller game. Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Barcelona; May 2007. p. 544–552.
  • Zou J, Xiong H, Wang D, et al. Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks. IEEE Trans Veh Technol. 2013 May;62(4):1827–1837.
  • Yu H, Gao L, Li Z, et al. Pricing for uplink power control in cognitive radio networks. IEEE Trans Veh Technol. 2010 Jan;59(4):1769–1778.
  • Kang X, Zhang R, Motani M. Price-based resource allocation for spectrum-sharing femtocell networks: a stackelberg game approach. IEEE J Sel Areas Commun. 2012;30(3):538–549.
  • Wang ZQ, Jiang LG, He C. A novel price-based power control algorithm in cognitive radio networks. IEEE Commun Lett. 2013 Jan;17(1):43–46.
  • Ahmed F, Tirkkonen O, Dowhuszko AA, et al. Distributed power allocation in cognitive radio networks under network power constraint,” Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Oulu, Finland; Jun. 2014. p. 1–6.
  • Oro SD, Mertikopoulos P, Moustakas AL, et al. Interference-based pricing for opportunistic multicarrier cognitive radio systems. IEEE Trans Wireless Commun. 2015 Dec;14(12):6536–6539.
  • Darsena D, Gelli G, Verde F. An opportunistic spectrum access scheme for multicarrier cognitive sensor networks. IEEE Sessors J. 2017 Apr;17(8):2596–2606.
  • Liu Z, Hao L, Xia Y, et al. Price bargaining based on the Stackelberg game in two-tier orthogonal frequency division multiple access femtocell networks. IET Communication. 2015;9(1):133–145.
  • Zeng B, Zhang C, Hu P, et al. Spectrum sharing based on a Bertrand game in cognitive radio sensor networks. Sensors. 2017 Jan;17(1):1–27.
  • Krishna V. Auction theory. London: Academic Press; 2002.
  • Dramitinos M, Stamoulis G, Courcoubetis C. Auction-based resource reservation in 2.5/3G networks. Mob Networks Appl. 2004 Dec;9(6):557–566.
  • Huang J, Han Z, Chiang M, et al. Auction-based resource allocation for cooperative communications. IEEE J Sel Areas Commun. 2008 Sep;26(7):1226–1237.
  • Guo J, Gu S, Wang X, et al. Subchannel and power allocation in OFDMA-based cognitive radio networks. Proceedings of the IEEE International Conference on Communications (ICC), Cape Town; May 2010. p. 1–5.
  • Mao J, Gao J, Liu Y, et al. Power allocation over fading cognitive MIMO channels: an ergodic capacity perspective. IEEE Trans Veh Technol. 2012 Mar;61(3):1162–1173.
  • Kang X, Zang R, Liang Y-C, et al. Optimal power allocation strategies for fading cognitive radio channel with primary user outage constraint. IEEE J Sel Areas Commun. 2011 Feb;29(2):374–383.
  • Naeem M, Iiianko K, Karmokar A, et al. Optimal power allocation for green radio: fractional programming approach. IET Commun. 2013 Aug;7(12):1279–1286.
  • Zheng L, Tan CW. Maximizing sum rates in cognitive radio networks: convex relaxation and global optimization algorithms. IEEE J Sel Areas Commun. 2014 Mar;32(3):667–680.
  • Nguyen HV, Nguyen V-D, Kim HM, et al. A convex optimization for sum rate maximization in a MIMO cognitive radio network. Proceedings of the IEEE Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria; Jul. 2016. p. 495–497.
  • Ahmad A, Khan MTR. Resource allocation for SC-FDMA based cognitive radio systems. Int J Commun Syst. 2017 Mar;30(5):1–13.
  • Moghadam MS, Talebi S. Jointly optimal rate control and total transmission power for cooperative cognitive radio system. IET Commun. 2017 Aug;11(11):1679–1688.
  • Shiung D, Chen K-C. On the optimal power allocation of a cognitive radio network. Proceedings of the 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo; 2009. p. 1241–1245.
  • Zhang Z, Wu Q, Wang J. Energy efficient power allocation strategy in cognitive relay networks. Radio Eng. 2012 Sep;21(3):809–814.
  • Pao W-C, Chen Y-F. Adaptive gradient based methods for adaptive power allocation in OFDM- based cognitive radio networks. IEEE Trans Veh Technol. 2014 Feb;63(2):836–848.
  • Sturm J. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim Methods Softw. 1999 Sep;11–12:625–653.
  • Toh KC, Todd M, Tutuncu RH. SDPT3 – a Matlab software package for semidefinite programming, version 1.3. Optim Methods Softw. 1999 Jan;11:545–581.
  • Yu LS, Jun XW, Yan G, et al. Resource allocation for multiple description coding multicast in OFDM-based cognitive radio networks. The J Chin Univ Posts Telecommun. 2012 Oct;19(5):51–57.
  • Qilin Q, Minturn A, Yang Y. An efficient water filling algorithm for power allocation in OFDM based cognitive radio systems,” Proceedings of the IEEE International Conference on Systems and Informatics, Yantai; May 2012. p. 2069–2073.
  • Jun P, Zhen H, Zhengjfa Z, et al. A worst case robust distributed power allocation in OFDM based cognitive radio network. Proceedings of the 32nd Chinese Control Conference (CCC), Xian; Jul 2013. p. 6422–6427.
  • Forouzan N, Ghorashi SA. New algorithm for joint sub-channel and power allocation in multicell OFDMA – based cognitive radio networks. IET Commun. 2014 Mar;8(4):508–515.
  • Dulek B, Gezici S, Sawai R, et al. Power adaptation for cognitive radio systems under average SINR loss constraint in the absence of path loss information. Wireless Pers Commun. 2014 Jul;77(1):151–172.
  • Hosseini E, Falahati A. Improving water-filling algorithm to power control cognitive radio system based upon traffic parameter and QoS. Wireless Pers Commun. 2012 Aug;70(4):1747–1759.
  • Krishnan KV, Sajith RM, Khara S. Dynamic resource allocation in OFDM based cognitive radio system considering primary user QoS and secondary user proportional constraints. J Commun Technol Electron. 2015 Nov;60(11):1269–1275.
  • Gu J, Lee T-J, Chung MY. Water-filling technique-based proportionally fair scheduling algorithm for SC-FDMA. Trans Emerg Telecommun Technol. 2016 Dec;27(12):1664–1671.
  • Chitra S, Kumaratharan N. Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation. Int J Electron. 2017 Jul. doi:10.1080/00207217.2017.1357201.
  • Roumeliotis AJ, Vassaki S, Panagopoulos AD. Joint power and time allocation scheme with QoS constraints in overlay multi-user cognitive radio networks. Wireless Pers Commun. 2018 Jan;98(1):337–362.
  • Li F, Lam K-Y, Wang L. Power allocation in cognitive radio networks over Rayleigh-fading channels with hybrid intelligent algorithms. Wireless Networks. 2018 Oct;24(7):2397–2407.
  • Zhou X, Wu B, Ho P-H, et al. An efficient power allocation algorithm for OFDM based underlay cognitive radio network. Proceedings of the IEEE Global Telecommunications Conference, Houston (TX); 2011. p.1–5.
  • Rezai F, Tadaion A. Interference alignment in cognitive radio networks. IET Commun. 2014 Mar;8(10):1769–1777.
  • Le Nir V, Scheers B. Implementation of an adaptive OFDMA PHY/MAC on USRP platforms for cognitive tactical radio network. Proceedings of the IEEE Military Communications and Information Systems Conference, Gdansk, Poland; Oct 2012. p.1–7.
  • Datla D, Wyglinski AM, Mindon GJ. A spectrum surveying framework for dynamic spectrum access network. IEEE Trans Veh Technol. 2009 Oct;58(8):4158–4168.
  • Elalem M, Zhao L. Effective capacity optimization for cognitive radio network based on underlay scheme in gamma fading channel. Proceedings of the International Conference on Computing Networking and Communication, San Diego (CA); Jan 2013. p. 714–718.
  • Akin S, Fidler M. On the transmission rate strategies in cognitive radios. IEEE Trans Wireless Commun. 2016 Mar;15(3):2335–2350.
  • Gastpar M. On capacity under received-signal constraints. Proceedings of the Allerton Conference Communications, Control, Computing, Monticello (IL); Oct 2004. p. 1322–1331.
  • Ghasemi A, Sousa ES. Capacity of fading channels under spectrum sharing constraints. Proceedings of the IEEE International Conference on Communications (ICC’06), Istanbul; Jun. 2006. p. 4373–4378.
  • Kang X, Liang Y-C, Nallanathan A, et al. Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Trans Wireless Commun. 2009 Feb;8(2):940–950.
  • Farraj AK, Ekin S. Performance of cognitive radios in dynamic fading channels under primary outage constraint. Wireless Pers Commun. 2013 May;73(8):637–649.
  • Vassaki S, Poulakis MI, Panagopoulous AD, et al. Qos driven power allocation under peak and average interference power constraints in cognitive radio networks. Wireless Pers Commun. 2014 Apr;78:449–474.
  • Zhao C, Kwak K. Comprehensive capacity ensured distributed binary power allocation in dense cognitive networks. J Network Syst Manage. 2010 Mar;18(1):24–42.
  • Chen Z, Gao F, Zhang Z, et al. Multiple-level power allocation strategy for secondary users in cognitive radio networks. EURASIP J Adv Signal Process. 2014 Dec;2014(51):1–7.
  • Wu P, Schober R, Bhargava VK. Optimal power allocation for wideband cognitive radio networks employing SC-FDMA. IEEE Commun Lett. 2013 Apr;17(4):669–672.
  • Musavian L, Aissa S. Fundamental capacity limits of cognitive radio in fading environments with imperfect channel state information. IEEE Trans Commun. 2009 Nov;57(11):3472–3480.
  • Suraweera HA, Smith PJ, Shafi M. Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans Veh Technol. 2010 May;59(4):1811–1822.
  • Sun K, Jung BC, Chong S, et al. Power allocation policies with full and partial inter- system channel state information for cognitive radio networks. Wireless Networks. 2012 Jun;19:99–113.
  • Rezki Z, Alouini M-S. Ergodic capacity of cognitive radio under imperfect channel-state information. IEEE Trans Veh Technol. 2012 Jun;61(5):2108–2119.
  • Kundu S, Prasad B, Roy SD. Spectrum sharing networks with imperfect channel state information. Proceedings of the 3rd International Conference on Computer, Communication, Control and Information Technology, Hooghly; Feb. 2015. p. 1–6.
  • Akin M, Gursoy MC. Performance analysis of cognitive radio systems with imperfect channel sensing and estimation. IEEE Trans Commun. 2015 May;63(5):1554–1566.
  • Zhang X, Xing J, Yan Z, et al. Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Commun Lett. 2013 Jan;17(1):27–30.
  • Bala I, Bhamrah MS, Singh G. Capacity in fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks. 2017 Feb;23(2):519–531.
  • Chang Z, Zhang Q, Guo X, et al. Energy-efficient resource allocation for OFDMA two-way relay networks with imperfect CSI. EURASIP J Wireless Commun Networking. 2015;2015(225):1–11.
  • Shen Y, Kwak KS. Robust power control for cognitive radio networks with proportional rate fairness. ICT Express. 2015 Jun;1(1):22–25.
  • Wang H, Zhou G. Power allocation based on data classification in wireless sensor networks. Sensors. 2017 May;17(5):1–13.
  • Mokari N, Parsaeefard S, Azmi P, et al. Robust ergodic uplink resource allocation in underlay OFDMA cognitive radio networks. IEEE Trans Mobile Comput. 2016 Feb;15(2):419–431.
  • Shi S, An K, Li G, et al. Optimal power control in cognitive satellite terrestrial networks with imperfect channel state information. IEEE Wireless Commun Lett. 2017 Sep;7(1):34–37.
  • Goldsmith AJ, Varaiya PP. Capacity of fading channels with channel side information. IEEE Trans Inf Theory. 1997 Nov;43(6):1986–1992.
  • Haykin S. Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun. 2005 Feb;23(2):201–220.
  • Musavian L, Aissa S. Capacity of spectrum-sharing channels with minimum rate requirements. IEEE Proceedings of the International Conference on Communications (ICC), Beijing (ICC), Beijing; May 2008. p. 4639–4643.
  • Smith P, Dmochowski P, Suraweera H, et al. The effects of limited channel knowledge on cognitive radio system capacity. IEEE Trans Veh Technol. 2013 Feb;62(2):927–933.
  • Jaafar W, Ohtsuki T, Ajib W, et al. Impact of CSI on the performance cognitive relay networks with partial relay selection. IEEE Trans Veh Technol. 2016 Feb;65(2):673–684.
  • Bansal G, Hossain MJ, Bhargava VK. Adaptive power loading for OFDM-based cognitive radio systems with statistical interference constraint. IEEE Trans Wireless Commun. 2011 Sep;10(9):2786–2791.
  • Kaligineedi P, Bansal G, Bhargava VK. Power loading algorithms for OFDM-based cognitive radio systems with imperfect sensing. IEEE Trans Wireless Commun. 2012 Dec;11(12):4225–4230.
  • Safavi SH, Ardebilipour M, Salari S. Relay beam-forming in cognitive two-way networks with imperfect channel state information. IEEE Wireless Commun Lett. 2012 Aug;1(4):344–347.
  • Chen J, Si J, Li Z, et al. On the performance of spectrum sharing cognitive relay networks with imperfect CSI. IEEE Commun Lett. 2012 Jul;16(7):1002–1005.
  • Sutton PD, Lotze J, Lahlou H, et al. Multi-platform demonstrations using the Iris architecture for cognitive radio network testbeds. Proceedings of the 5th International Conference on Cognitive Radio Oriented Wireless Networks & Communications (CROWNCOM), Cannes, France; Jun. 2010. p. 1–5.
  • Sutton PD, Lotze J, Lahlou H, et al. Iris: an architecture for cognitive radio networking testbeds. IEEE Commun Mag. 2010 Sep;48(9):114–122.
  • Lotze J, Fahmy SA, Noguera J, et al. A model-based approach to cognitive radio design. IEEE J Sel Areas Commun. 2011 Feb;29(2):455–468.
  • Chen Z, Guo N, Qiu RC. Building a cognitive radio network testbed. Proceedings of the IEEE SoutheastCon, Nashville (TN); Mar. 2011. p. 91–96.
  • Sanchez A, Moerman I, Bouckaert S, et al. Testbed federation: An approach for experimentation-driven research in cognitive radios and cognitive networking. Proceedings of the IEEE Future Network & Mobile Summit (FutureNetw), Warsaw, Poland; Jun. 2011, pp. 1–9.
  • He Z, Liu T, Tang Y, et al. The UESTC reconfigurable cognitive radio testbed. International ICST Conference on Communications and Networking (CHINACOM), Harbin, China; Aug. 2011. p. 939–943.
  • Budihal R, Desikan B, Jamadagni HS. Co-operative spectrum sensing: Implementation and benchmarking on ANRC cognitive radio testbed. Proceedings of the IEEE International Conference on Signal Processing and communications, Bangalore, India; Aug. 2012. p. 1–5.
  • Macaluso I, Ozgul B, Forde TK, et al. Spectrum and energy efficient block edge mask-compliant waveforms for dynamic environments. IEEE J Sel Areas Commun. 2014 Feb;32(2):307–321.
  • Cardoso LS, Massouri A, Guillon B, et al. CorteXlab: a facility for testing cognitive radio networks in a reproducible environment. Proceedings of the IEEE 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Oulu, Finland; Jun 2014. p. 503–507.
  • Mishra SM, Cabric D, Chang C, et al. A real time cognitive radio testbed for physical and link layer experiments. Proc. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Baltimore (MD); Nov 2015. p. 562–567.
  • Rawat DB. ROAR: An architecture for real-time opportunistic spectrum access in cloud-assisted cognitive radio networks. Proceedings of the IEEE 13th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas (NV); Jan 2016. p. 1–6.
  • Ambede A, Shreejith S, Vinod AP, et al. Design and realization of variable digital filters for software-defined radio channelizers using an improved coefficient decimation method. IEEE Trans Circuits Syst-II: Express Briefs. 2016 Jan;63(1):59–63.
  • Raschella A, Umbert A. Implementation of cognitive radio networks to evaluate spectrum management strategies in real-time. Comput Commun. 2016 Apr;79(1):37–52.
  • Shabara Y, Mohamed A, Ali AKA. A hardware implementation for efficient spectrum access in cognitive radio networks. IEEE Wireless Communications and Networking Conference (WCNC), San Francisco (CA); Mar 2017, pp. 1–6.
  • Sadek A, Mostafa H, Nassar A, et al. Towards the implementation of multiband multi-standard software defined radio using dynamic partial reconfiguration. Int J Commun Syst. 2017 Jun. doi:10.1002/dac.3342.
  • Jashbi F, So DKC. Hybrid overlay/underlay cognitive radio network with MC-CDMA. IEEE Trans Veh Technol. 2016 Apr;65(4):2038–2047.
  • Yang H, Xie X, Vaslilakos AV. Stakelberg game-based power control with outage probability constraints for cognitive radio networks. Int J Distrib Sensor Networks. 2015;2015:1–9.
  • Tang M, Xin Y. Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Comput Networks. 2016 May;100(8):1–11.
  • Wang S, Ruby R, Leung VCM, et al. Energy-efficient power allocation for multi-user single-AF-relay underlay cognitive radio networks. Comput Networks. 2016 Jul;103(5):115–128.
  • Yand L, Alouini MS. Performance comparison of different selection combining algorithms in presence of co-channel interference. IEEE Trans Veh Technol. 2006;55(2):559–571.
  • Nachtigall J, Zubho A, Redlich J-P. The impact of adjacent channel interference on multi-radio systems using IEEE 802.11. Proceedings of the International Wireless Communication and Mobile Computing Conference, Crete island, Greece; Aug 2008. p. 874–881.
  • Angalakis V, Papadakis S, Siris VA, et al. Adjacent channel interference in IEEE 802.11a is harmful: Tested validation of simple qualification model. IEEE Comm Mag. 2010;49(3):334–344.
  • Shamson ZA, Abdulrazak LF, Rahman TA. Co-channel and adjacent channel interference evaluation for IMT-Advanced co-existence with existing fixed systems. Proceedings of the IEEE International RF and Microwave Conference, Kuala Lumpur; Dec 2008. p. 65–69.
  • Sum CS, Funada R, Wang J, et al. Error performance and throughput evaluation of a multi Gbps millimeter-wave WPAN systems in the presence of co-channel and adjacent channel interference. IEEE J Sel Areas Commun. 2009 Oct;27(8):1433–1442.
  • Hu D, Mao S. On co-channel and interference channel interference mitigation in cognitive radio networks. Proc. IEEE Military Communications Conference, Baltimore (MD); Nov 2011. p. 13–18.
  • Bedeer E, Dobre OA, Ahmed MH, et al. Rate–interference tradeoff in OFDM-based cognitive radio systems. IEEE Trans Veh Technol. 2015 Sep;64(9):4292–4298.
  • Bansal G, Hasan Z, Hossain J, et al. Subcarrier and power adaptation for multiuser OFDM based cognitive radio systems. Proceedings of the National Conference on Comm. (NCC), Chennai; Jan 2010. p. 29–31.
  • Ding L, Nagaraju PB, Melodia T, et al. Software defined joint routing and waveform selection for cognitive ad hoc networks. Proceedings of the IEEE Military Communications Conference, San Jose (CA); Nov 2010. p. 1453–1459.
  • Khoshkholg MG, Navaie K, Yanikomeroglu H. Access strategies for spectrum sharing in fading environment: overlay, underlay and mixed. IEEE Trans Mobile Comput. 2010 Dec;9(12):1780–1793.
  • Higuchi K, Benjebbour A. Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Trans Commun. 2015 Mar;E98-B(3):403–414.
  • Islam SMR, Avazov N, Dobre OA, et al. Power domain non-orthogonal multiple access (NOMA) in 5G systems: potential and challenges. IEEE Commun Surv Tutorials. 2017;19(2):721–742.
  • Han W, Zhang Y, Wang X, et al. Orthogonal power division multiple access: a Green communication perspective. IEEE J Sel Areas Commun. 2016 Dec;34(12):3828–3842.
  • Yang Z, Ding Z, Fan P, et al. On the performance of non-orthogonal multiple access systems with partial channel information. IEEE Trans Commun. 2016 Feb;64(2):656–657.
  • Pandit S, Singh G. Spectrum sharing in cognitive radio networks: medium access control protocol based approach. Cham: Springer; 2017.
  • Ding Z, Liu Y, Choi J, et al. Applications of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun Mag. 2017 Feb;55(2):185–191.
  • Liu Y, Ding Z, Elkashlan M, et al. Nonorthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Trans Veh Technol. 2016 Dec;65(12):10152–10157.
  • Lv L, Chen J, Ni Q. Cooperative non-orthogonal multiple access in cognitive radio. IEEE Commun Lett. 2016 Oct;20(10):2059–2062.
  • Nikopour H, Yi E, Bayesteh A, et al. SCMA for downlink multiple access of 5G wireless networks. Proceedings of the IEEE Global Communication Conference, Austin, (TX); Dec 2014. p. 3940–3945.
  • Nikopour H, Baligh H. Sparse code multiple access. Proceedings of the IEEE International Symposium on Personal Indoor and Mobile Radio Communication, London; Sep 2013. p. 332–336.
  • [cited 2016 Feb 12]. Available from: http:/wwwen.zte.com.cn/endata/magazine/ztetechnologies/2015/no3/201505/P020150512471681585293.pdf
  • Yunzheng T, Long L, Shang L, et al. A survey: several technologies of non-orthogonal transmission for 5G. Chin Commun. 2015 Oct;12(10):1–15.
  • Zheng J, Li B, Su X, et al. Pattern division multiple access (PDMA) technique for cellular future radio access. Proceedings of the IEEE International Conference on Wireless Communications and Signal Processing, Nanjing; Oct 2015. p. 1–5.
  • Do D-T, Le A-T, Le C-B, et al. On exact outage and throughput performance of cognitive radio based non-orthogonal multiple access networks with and without D2D link. Sensors. 2019 Jul;19(5):1–17.
  • Stoica R-A, Abreu GTF, Ishibashi K. Massively concurrent non-orthogonal multiple access for 5G networks and beyond. IEEE Access. 2019 Jun;7:82080–82100.
  • Thakur P, Kumar A, Pandit S, et al. Frameworks of non-orthogonal multiple access techniques in cognitive radio communication systems. Chin Commun. 2019 Jun;16(6):129–149.
  • Thakur P, Singh G. Sum-Rate analysis of MIMO based CR-NOMA communication system. Proceedings of the 5th International Conference on Image Information Processing, Waknaghat, India; Nov 2019. p. 1–5.
  • Fettweis G, Krondorf M, Bittner S. GFDM- Generalized frequency division multiplexing. Proceedings of the IEEE Vehicular Technology Conference, Barcelona; 2009. p. 1–4.
  • Dutta R, Michailow N, Lantmaier M, et al. GFDM interference cancellation for flexible cognitive radio PHY design. Proceedings of the IEEE Vehicular Technology Conference, Quebec City QC; 2012. p. 1–5.
  • Gaspar I, Mendes L, Matthe M, et al. GFDM – a framework for virtual PHY services in 5G networks. arXiv:1507.04608v1[cs. IT] 16 Jul 2015.
  • Zhang Y, Zheng J, Chen H-H. Cognitive radio networks: architectures, protocols, and standards. Boca Raton (FL): CRC Press, Inc.; 2010.
  • Li D. Opportunistic DF-AF selection for cognitive relay networks. IEEE Trans Veh Technol. 2016 Apr;65(4):2790–2796.
  • Oi Y, Imran A, Souza RD, et al. On the optimization of distributed compression in multi-relay cooperative networks. IEEE Trans Veh Technol. 2016 Apr;65(5):2114–2128.
  • Sengupta S, Subbalakshmi KP. Open research issues in multi-hop cognitive radio networks. IEEE Commun Mag. 2013;51(4):168–178.
  • Qadirn J, Baig A, Ali A, et al. Multicasting in cognitive radio networks: algorithms, techniques and protocols. J Network Comput Appl. 2014 Oct;45:44–61.
  • Arachchige CJL, Venkatesan S, Chandrasekaran R, et al. Minimal time broadcasting in cognitive radio networks. Proceedings of the International Conference on Distributed Computing and Networking (ICDCN), Bangalore, India; 2011. p. 364–375.
  • Song Y, Xie J. A QoS-based broadcast protocol for multi-hop cognitive radio ad hoc networks under blind information. Proc. IEEE Global Telecommunication Conference (GLOBECOM), Houston (TX); Dec 2011. p. 1–5.
  • Song Y, Xie J. A distributed broadcast protocol in multi-hop cognitive radio ad hoc networks without a common control channel. Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Orlando (FL); Mar 2012. p. 2273–2281.
  • Song Y, Xie J, Wang X. A novel unified analytical model for broadcast protocol in multi-hop cognitive radio ad-hoc networks. IEEE Trans Mobile Comput. 2014 Aug;13(8):1653–1667.
  • Song Y, Xie J. BRACER: a distributed broadcast protocol in multi-hop cognitive radio ad-hoc networks with collision avoidance. IEEE Trans Mobile Comput. 2015 Mar;14(3):509–524.
  • Kaiser T, Cao H, Jiang W, et al. A current snapshot and some thoughts on commercialization for future cellular systems. J Signal Process Syst. 2013 Dec;73(3):217–225.
  • Martinez ML, Alcaraz JJ, Alonso JV, et al. Automated spectrum trading mechanisms: understanding the big picture. Wireless Networks. 2015 Feb;21(2):685–708.
  • Khattab A, Bayoumi MA. Standardization of cognitive radio networking: a comprehensive survey. Ann Telecommun. 2015 Dec;70(3):465–477.
  • https://www.theguardian.com/technology/2017/jun/27/petya-ransomware-cyber-attack-who-what-why-how; [cited 2017 Oct 6].
  • Naeem A, Rehmani MH, Saleem Y, et al. Network coding in cognitive radio networks: a comprehensive survey. IEEE Commun Surv Tutorials. 2017;19(3):1945–1973.
  • Cardenas A, Radosavac S, Baras J. Evaluation of detection algorithms for MAC layer misbehavior: theory and experiments. IEEE/ACM Trans Networking. 2009;17(2):605–617.
  • Fragkiadakis AG, Tragos EZ, Askoxylakis IG. A survey on security threats and detection techniques in cognitive radio networks. IEEE Commun Surv Tutorials. 2013;15(1):428–445.
  • Soto J, Nogueira M. A framework for resilient and secure spectrum sensing on cognitive radio networks. Comput Networks. 2017 Mar;115:130–138.
  • Xu D, Li X. Optimal power allocation for cognitive radio networks with primary user secrecy rate loss constraint. Proceedings of the IEEE International Conference on Communication, London; Jun 2015. p. 7615–7621.
  • Pazin L, Leviatan Y. Rotated-T slot antenna for cognitive radio operation in the 3.1–6 GHz frequency range. J Electromagn Waves Appl. 2015 May;29(9):1149–1156.
  • Wu Y, Zhang T, Tsang D. Joint pricing and power allocation for dynamic spectrum access networks with stackelberg game model. IEEE Trans Wireless Commun. 2011;10(1):12–19.
  • Hu H, Zhang H, Yu H. Energy-efficient sensing for delay-constrained cognitive radio systems via convex optimization. J Optim Theory Appl. 2016 Jan;168(1):310–331.
  • Liu Z, Wang P, Xia Y, et al. Chance-constraint optimization of power control in CRNs. Peer-to-Peer Networking Appl. 2016 Jan;9(1):245–253.
  • Chen W-H, Lin W-R, Tsao H-C, et al. Probabilistic power allocation for CRNs with outage constraints and one-bit side information. IEEE Trans Signal Process. 2016 Feb;64(4):867–881.
  • Hu H, Zhang H, Li N. Location-information-assisted joint spectrum sensing and power allocation for CRNs with primary-user outage constraint. IEEE Trans Veh Technol. 2016 Feb;65(2):658–672.
  • Oro SD, Ekici E, Palazzo S. Optimal power allocation and scheduling under jamming attacks. IEEE/ACM Trans Networking. 2017 Jun;25(3):1310–1323.
  • Zhu G-X, Pei X-B, Qu D-M, et al. Joint bandwidth allocation and power control with interference constraints in multi-hop CRNs. J Zhejiang Univ-Sci C (Comput & Electron). 2010;11(2):139–150.
  • Almasoud AM, Kamal AE. Multi-objective optimization for many-to-many communication in CRNs. IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA; Dec 2015. p. 1–6.
  • Balieiro A, Yoshioka P, Dias K, et al. A multi-objective genetic optimization for spectrum sensing in cognitive radio. Expert Syst Appl. 2014 Jun;41(18):3640–3650.
  • Thakur P, Singh G. Security and interference management in the cognitive inspired internet of medical things. In: Amit Kumar Singh and Mohamed Elhoseny, editors. Intelligent data security Solutions for e-health Applications. Elsevier; Forthcoming 2020.
  • Dai H, Liu Y, Chen G, et al. Safe charging for wireless power transfer. IEEE/ACM Trans Networking. 2017 Sep;25(6):3531–3544.
  • Shkolnikov YP, et al. “Electromagnetic interference and exposure from household wireless networks. in IEEE Symposium on Product Compliance Engineering Proceedings, Anaheim (CA); Oct 2011. p. 1–5.
  • Gandhi OP, Morgan LL, Salles AAD, et al. Exposure limits: The underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med. 2011;31(1):34–51.
  • Karinen A, Heinävaara S, Nylund R, et al. Mobile phone radiation might alter protein expression in human skin. BMC Genomics. 2008;9(1):77.
  • Hygienic standard for environmental electromagnetic waves. [cited 1987]. [Online]. Available from: http://www.moh.gov.cn/zwgkzt/pgw/201212/34317.shtml
  • Ahlbom A, et al. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International commission on non-ionizing radiation protection. Health Phys. 1998;74(4):494–522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.