44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of the anisotropy development of mechanical properties of pitch-based carbon fibers

ORCID Icon, ORCID Icon & ORCID Icon
Received 30 Jan 2024, Accepted 12 Apr 2024, Published online: 30 Apr 2024

References

  • Okabe T. Recent studies on numerical modelling of damage progression in fiber-reinforced plastic composites. Mech Eng Rev. 2015;2(1):3–11. doi: 10.1299/mer.14-00266
  • Yokozeki T, Takemura H, Aoki T. Numerical analysis on the flexural strength of unidirectional CFRTP composites with in-plane fiber bundle waviness. Adv Compos Mater. 2020;29(1):89–100. doi: 10.1080/09243046.2019.1650322
  • Higuchi R, Aoki R, Yokozeki T, et al. Evaluation of the in-situ damage and strength properties of thin-ply CFRP laminates by micro-scale finite element analysis. Adv Compos Mater. 2020;29(5):475–493. doi: 10.1080/09243046.2020.1740867
  • Higuchi R, Aoki R, Yokozeki T, et al. Evaluation of the in-situ damage and strength properties of thin-ply CFRP laminates by micro-scale finite element analysis. J Jpn Soc Comps Mater. 2020;46(5):212–222. [ Japanese]. doi: 10.6089/jscm.46.212
  • Sawamura Y, Yamazaki Y, Yoneyama S, et al. Multi-scale numerical simulation of impact failure for cylindrical CFRP, Advanced Composite Materials. Adv Compos Mater. 2021;30(S1):19–38. doi: 10.1080/09243046.2020.1748789
  • Nishikawa M, Okabe T, Hemmi K, et al. Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites. Int J Solids Struct. 2008;45(14–15):4098–4113. doi: 10.1016/j.ijsolstr.2008.02.021
  • Sato M, Imai E, Koyanagi J, et al. Evaluation of interfacial strength of carbon fiber reinforced temperature resistant polymer composites by micro-droplet test. J Jpn Soc Comps Mater. 2017;43(1):33–39. [ Japanese]. doi: 10.6089/jscm.43.33
  • ISO 101119: 2020 - Carbon fibre -Determination of density.
  • ISO 10120: 1991 - Carbon fibre - Determination of linear density.
  • ISO 11567: 2018 - Carbon fibre - Determination of filament diameter and cross-sectional area.
  • ISO 11566: 1996 - Carbon fibre - Determination of the tensile properties of single-filament specimens.
  • Adams RD. The dynamic longitudinal shear modulus and damping of carbon fibres. J Phys D Appl Phys. 1975;8:738–748. doi: 10.1088/0022-3727/8/7/006
  • Adams RD, Lloyd DH. Apparatus for measuring the torsional modulus and damping of single carbon fibers. J Phys E: Sci Instrum. 1975;8(6):475–480. doi: 10.1088/0022-3735/8/6/015
  • Sawada Y, Shindo A. Torsional properties of carbon fibers. Carbon. 1992;30(4):619–629. doi: 10.1016/0008-6223(92)90181-U
  • Tsai CL, Daniel M. Determination of shear modulus of single fibers. Exp Mech. 1999;39(4):284–286. doi: 10.1007/BF02329806
  • Ishikawa M, Kogo Y, Koyanagi J, et al. Torsional modulus and internal friction of polyacrylonitrile- and pitch-based carbon fibers. J Mater Sci. 2015;50(21):7018–7025. doi: 10.1007/s10853-015-9254-z
  • Hawthorne HM, Teghtsoonian E. Axial compression fracture in carbon fibres. J Mater Sci. 1975;10(1):41–51. doi: 10.1007/BF00541030
  • Ohsawa T, Miwa M, Kawade MJ. Axial compressive strength of carbon fiber Appl. J Appl Polym Sci. 1990;39(8):1733–1743. doi: 10.1002/app.1990.070390811
  • Shinohara AH, Sato T, Saito F, et al. A novel method for measuring direct compressive properties of carbon fibers using a micro-mechanical compression tester. J Mater Sci. 1993;28(24):6611–6616. doi: 10.1007/BF00356404
  • Melanitis N, Tetow PL, Galiotis C, et al. Compressional behaviour of carbon fibres Part 2 Modulus softening. J Mater Sci. 1994;29(3):786–799. doi: 10.1007/BF00445995
  • Kawabata S, Kotani T, Yamashita Y. Measurement of the longitudinal mechanical properties of high-performance fibers. J Text Inst. 1995;86(2):347–359. doi: 10.1080/00405009508631339
  • Nakatani M, Shioya M, Yamashita J. Axial compressive fracture of carbon fibers. Carbon. 1999;37(4):601–608. doi: 10.1016/S0008-6223(98)00230-9
  • Oya N, Johnson DJ. Direct measurement of longitudinal compressive strength in carbon fibres. Carbon. 1999;37(10):1539–1554. doi: 10.1016/S0008-6223(99)00033-0
  • Oya N, Johnson DJ. Longitudinal compressive behaviour and microstructure of PAN-based carbon fibres. Carbon. 2001;39(5):635–645. doi: 10.1016/S0008-6223(00)00147-0
  • Sugimoto Y, Shioya M, Yamamoto K, et al. Relationship between axial compression strength and longitudinal microvoid size for PAN-based carbon fiber. Carbon. 2012;50(8):2860–2869. doi: 10.1016/j.carbon.2012.02.053
  • Ueda M, Saito W, Imahori R, et al. Longitudinal direct compression test of a single carbon fiber in a scanning electron microscope. Compos. Part a Appl. Sci Manuf. 2014;67:96–101. doi: 10.1016/j.compositesa.2014.08.021
  • Ueda M, Akiyama M. Compression test of a single carbon fiber in a scanning electron microscope and its evaluation via finite element analysis. Adv Compos Mater. 2019;28(1):57–71. doi:10.1080/09243046.2018.1433506
  • Kawabata S. Measurement of the transverse mechanical properties of high-performance fibers. J Text Inst. 1990;81(4):432–447. doi: 10.1080/00405009008658721
  • Hayakawa E, Shioya M, Saitoh T, et al. Transverse compressive behavior of carbon fibers. J Soc Comp Mat. 1994;20(5):187–194. [ Japanese]. doi: 10.6089/jscm.20.187
  • Naito K, Tanaka Y, Yang J-M. Transverse compressive properties of polyacrylonitrile (PAN)-based and pitch-based single carbon fibers. Carbon. 2017;118:168–183. doi:10.1016/j.carbon.2017.03.031
  • Williams WS, Steffens DA, Bacon R. Bending behavior and tensile strength of carbon fibers. J Appl Phys. 1970;41(12):4893–4901. doi: 10.1063/1.1658559
  • Jone WR, Johnson JW. Intrinsic strength and non-hookean behavior of carbon fibres. Carbon. 1971;9(5):645–655. doi: 10.1016/0008-6223(71)90087-X
  • DaSilva JLG, Johnson DJ. Flexural studies of carbon fibers. J Mater Sci. 1984;19(10):3201–3210. doi: 10.1007/BF00549805
  • Loidl D, Paris O, Burghammer M, et al. Direct observation of nanocrystallite buckling in carbon fibiers under bending load. Phys Rev Lett. 2005;95:225501. doi: 10.1103/PhysRevLett.95.225501
  • Young RJ OH, Tanaka F, Tanaka F, et al. Tensile failure phenomena in carbon fibers. Carbon. 2016;107:474–481. doi: 10.1016/j.carbon.2016.06.037
  • Naito K, Tanaka Y, J-M Y, et al. Flexural Properties of PAN- and pitch-based carbon fibers. J Am Ceram Soc. 2009;92(1):186–192. doi: 10.1111/j.1551-2916.2008.02868.x
  • Allen SR. Tensile recoil measurement of compressive strength for polymeric high performance fibers. J Mater Sci. 1987;22(3):853–859. doi: 10.1007/BF01103520
  • Dobb MG, Johnson DJ, Park CR. Compressional behavior of carbon fibers. J Mater Sci. 1990;25(2):829–832. doi: 10.1007/BF03372169
  • Hayes GJ, Edie DD, Kennedy JM. The recoil compressive strength of pitch-based carbon fibers. J Mater Sci. 1993;28(12):3247–3257. doi: 10.1007/BF00354243
  • Maurin R, Davies P, Baral N, et al. Transverse Properties of carbon fibers by nanoindentation and Micro-mechanics. Appl Compos Mater. 2008;15(2):61–73. doi: 10.1007/s10443-008-9057-3
  • Csanadi T, Nemeth D, Zhan C, et al. Nanoindentation derived electric constants of carbon fibers and their nanostructural based predictions. Carbon. 2017;119:314–325. doi: 10.1016/j.carbon.2017.04.048
  • Duan S, Liu F, Pettersson TEA. Dtermination of transverse and shear moduli of single carbon fibers. Carbon. 2020;158:772–782. doi: 10.1016/j.carbon.2019.11.054
  • Yang F, Liu W, Yi MEA. Effect of high temperature treatment on the micriostructure and elastoplastic properties of polyacrylonitrile-based carbon fibers. Carbon. 2020;158:783–794. doi: 10.1016/j.carbon.2019.11.055
  • Shirasu K, Goto K, Naito KEA. Microstructure-elastic property relationships in carbon fibers: A nanoindentation study. Composites Part B. 2020;200:108342. doi: 10.1016/j.compositesb.2020.108342
  • Guruprasad TS, Keryvin V, Charleux L, et al. On the determination of the elastic constants of carbon fibers by nanoindentation tests. Carbon. 2021;173:572–586. doi: 10.1016/j.carbon.2020.09.052
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583. doi: 10.1557/JMR.1992.1564
  • Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19(1):3–20. doi: 10.1557/jmr.2004.19.1.3
  • Smith RE. Ultrasonic elastic constants of carbon fibers and their composites. J Appl Phys. 1972;43(6):2555–2561. doi: 10.1063/1.1661559
  • Ueda M, Taguchi T. Measurements of transverse Young’s modulus of fibers by angular characteristics of ultrasonic scattering. Adv Comp Mater. 1991;1(4):309–320. doi: 10.1163/156855191X00180
  • Miyagawa H, Mase T, Sato CEA. Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon. 2006;44(10):2002–2008. doi: 10.1016/j.carbon.2006.01.026
  • Tanaka F, Ishikawa T, Tane M. A comprehensive review of the elastic constants of carbon fibers: implications for design and manufacturing of high-performance composites materials. Adv Comp Mater. 2024;33(2):269–289. doi: 10.1080/09243046.2023.2245210
  • Fujita K, Kojima M, Iwashita N. Monofilament tests of carbon fiber (No. 2) -torsional test. J Mater Sci Tech Jpn. 2013;58(3):143–148. [ Japanese].
  • Fujita K, Iwashita N, Hojo M. Measurement of the distribution of cross sectional shape along the axis of carbon fibers and its effect on the mechanical properties. TANSO. 2017;2017(278):111–117. [ Japanese]. doi: 10.7209/tanso.2017.111
  • Fujita K, Iwashita N, Sawada Y. Evaluation of torsional-tensile properties of carbon fiber. J Soc Mater SciJap. 2016;65(8):573–579. [ Japanese]. doi: 10.2472/jsms.65.573
  • Fujita K, Sawada Y, Nakanishi Y. Effect of cross-sectional textures on transverse compressive properties of pitch-based carbon fibers. Mater Sci Res Int. 2001;7(2):116–121. doi: 10.2472/jsms.50.6Appendix_116
  • Iwashita N, Morohoshi K, Fujita K. Monofilament tests of carbon fiber (No.1) -transverse compressive test-. J Mater Sci Tech Jpn. 2012;57(4):134–139. [ Japanese].
  • Morohoshi K, Fujita K, Iwashita N. Monofilament tests of carbon fiber (No.3) - effect of indenter size on transverse compressive test. J Mater Sci Tech Jpn. 2014;59(3):142–147. [ Japanese].
  • Nagai H, Sugimoto Y, Fujita K, et al. Discussion on evaluation condition for compressive properties of carbon fiber using micro hardness tester. J Mater Sci Tech Jpn. 2016;61(3):136–141. [ Japanese].
  • Sugimoto Y, Iwashita N, Kageyama K. Monofilament tests of carbon fiber (No. 4) -axial compression test. J Mater Sci Tech Jpn. 2015;60(1):52–56. [ Japanese].
  • Iwashita N, Morohoshi K, Urabe K, et al. Monofilament tests of carbon fiber (No.5) - three-point bending test. J Mater Sci Tech Jpn. 2016;61(4):261–266. [ Japanese].
  • Nagai H, Fujita K, Urabe K, et al. FEM analysis of flexural modulus of carbon fiber monofilament considering anisotropy. Adv Compos Mater. 2022;31(2):137–150. doi: 10.1080/09243046.2021.1931776
  • Fujita K. Study on test methods for anisotropic mechanical properties of carbon fibers [ dissertation]. Kyoto: Kyoto University; 2020. [ Japanese].
  • Fujita K, Nagai H, Sugimoto Y, et al. Various mechanical tests of carbon fiber monofilaments. Carbon Reports. 2023;2(1):31–49. in Japanese. doi: 10.7209/carbon.020103
  • Iwashita N, Watanabe H, Yamada N. Development of a measurement system for the thermal expansion of a carbon fiber. TANSO. 2021;296:2–8. [ Japanese]. doi: 10.7209/tanso.2021.2
  • Qin X, Lu Y, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon. 2015;50(12):4459–4469. doi: 10.1016/j.carbon.2012.05.024
  • Nippon graphite fiber corporation [Internet], Himeji (Japan). Available from https://www.ngfworld.com/en/product/yarn.html
  • Iwashita N, Park CR, Fujimoto HEA. Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon. 2004;42(4):701–714. doi: 10.1016/j.carbon.2004.02.008
  • JIS R7651:2007. Measurement of lattice parameters and crystallite size of carbon materials. Tokyo: Japan Industrial Standard, Japanese Standards Association; 2007.
  • Iwashita N. Chapter2-X-ray powder diffraction, characterization, materials science and engineering of carbon. In: Inagaki M Kang F. editors. Amsterdam Netherland, Elsevier; 2016:pp. 7–25. doi: 10.1016/B978-0-12-805256-3.00002-7
  • Warren BE. X-ray diffraction in random layer lattices. Phys Rev. 1941;59(9):693–698. doi: 10.1103/PhysRev.59.693
  • Houska CR, Warren BE. X-ray study of the graphitization of carbon black. J Appl Phys. 1951;25(12):1503–1509. doi: 10.1063/1.1702373
  • Noda T, Iwatsuki M, Inagaki M. Changes of Probabilities P1, PABA, PABC with heat treatment of carbons. TANSO. 1966;1966(47):4714–4723. [ Japanese]. doi: 10.7209/tanso.1966.47_14
  • JIS R1639:2007. Test methods of properties of fine ceramic granules Part 5: compressive strength of a single granule. Tokyo: Japan Industrial Standard, Japanese Standards Association; 2007.
  • Abdul Jawad S, Ward IM. The transverse compression of oriented nylon and polyethylene extrudates. J Mater Sci. 1978;13(7):1381–1387. doi: 10.1007/BF00553190
  • Field JS, Swain MV. The indentation characterization of the mechanical properties of various carbon materials: Glassy carbon, coke and pyrolytic graphite. Carbon. 1996;34(11):1357–1366. doi: 10.1016/S0008-6223(96)00071-1
  • Iwashita N, Swain MV, Field JS, et al. Elasto-plastic deformation of glass-like carbons heat-treated at different temperatures. Carbon. 2001;39(10):1525–1532. doi: 10.1016/S0008-6223(00)00272-4
  • JIS K7074:1988. Testing methods for flexural properties of carbon fiber reinforced plastics. Tokyo: Japan Industrial Standard, Japanese Standards Association; 1988.
  • Fujita K, Nagai H, Iwashita N. An attempt to evaluation the short gage tensile strength of carbon fibers in test under an optical microscope. J Soc Mat Sci Jpn. 2022;71(5):461–466. [ Japanese]. doi: 10.2472/jsms.71.461
  • Tanaka F, Okabe T, Okuda HEA. Factors controlling the strength of carbon fibers in tension. Composites Part A. 2014;57:88–94. doi: 10.1016/j.compositesa.2013.11.007
  • Watanabe J, Tanaka F, Okuda H, et al. Tensile strength distribution of carbon fibers at short gauge lengths. Adv Compos Mat. 2014;23(5–6):535–550. doi: 10.1080/09243046.2014.915120
  • Kimura H, Kubomura K. Mechanical properties and applications of pitch-based carbon fiber reinforced plastic (CFRP). Nippon Steel Tech Rep. 1993;59:71–76.
  • Urabe K IN, Nagai H. Evaluation of mechanical properties of the carbon fiber with anisotropy (Part3) Pitch-based carbon fibers. 1D-07. Proceedings of the 10th Japan Conference on Composite Materials. Nihon University, Tokyo, 2019 March 6-8. [ Japanese].
  • Kobayashi H, Arai Y, Nakamura H, et al. Evaluation of fracture mechanics characteristics of a high strength graphite IG-11. J Soc Mater Sci Jap. 1988;37(419):934–938. [ Japanese]. doi:10.2472/jsms.37.934
  • Kobayashi H, Arai Y, Araki T, et al. Evaluation of fracture toughness resistance of high strength graphite. J Mater Test Res Assoc Jpn. 1988;39(443):1076–1081. [ Japanese]. doi:10.2472/jsms.39.1076
  • Sugimoto Y, Shioya M, Kageyama K. Determination of intrinsic strength of carbon fibers. Carbon. 2016;100:208–213. doi:10.1016/j.carbon.2016.01.021
  • Horikawa N, Nakayama H, Sakaida A, et al. Fatigue strength of PAN-based carbon fiber under cyclic loading. J Soc Mat Sci Jpn. 2000;49(4):426–432. [ Japanese]. doi: 10.2472/jsms.49.426
  • Kobayashi H. Chapter2.1.7 Fatigue testing of single fibers. In: Shioya ME. Editors. The Future of Carbon Fiber and Carbon Fiber Reinforced Composites. Tokyo Japan: S&T book; 2018. pp. 93–101. Japanese.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.