344
Views
1
CrossRef citations to date
0
Altmetric
Invited Review

Rosacea and Dry Eye Disease

ORCID Icon, ORCID Icon &
Pages 570-579 | Received 24 Apr 2021, Accepted 09 Nov 2021, Published online: 28 Feb 2022

References

  • Schaefer I, Rustenbach SJ, Zimmer L, et al. Prevalence of skin diseases in a cohort of 48,665 employees in Germany. Dermatology. 2008;217:169–172. doi:10.1159/000136656.
  • Augustin M, Herberger K, Hintzen S, et al. Prevalence of skin lesions and need for treatment in a cohort of 90 880 workers. Br J Dermatol. 2011;165:865–73.3. doi:10.1111/j.1365-2133.2011.10436.x.
  • Berg M, Liden S. An epidemiological study of rosacea. Acta Derm Venereol. 1989;69:419–423.
  • Tan J, Schofer H, Araviiskaia E, et al. Prevalence of rosacea in the general population of Germany and Russia – the RISE study. J Eur Acad Dermatol Venereol. 2016;30:428–434. doi:10.1111/jdv.13556.
  • Abram K, Silm H, Oona M. Prevalence of rosacea in an Estonian working population using a standard classification. Acta Derm Venereol. 2010;90:269–273. doi:10.2340/00015555-0856.
  • Spoendlin J, Voegel JJ, Jick SS, Meier CR. A study on the epidemiology of rosacea in the UK. Br J Dermatol. 2012;167:598–605. doi:10.1111/j.1365-2133.2012.11037.x.
  • Kyriakis KP, Palamaras I, Terzoudi S, et al. Epidemiologic aspects of rosacea. J Am Acad Dermatol. 2005;53:918–919. doi:10.1016/j.jaad.2005.05.018.
  • Chamaillard M, Mortemousque B, Boralevi F, et al. Cutaneous and ocular signs of childhood rosacea. Arch Dermatol. 2008;144:167–171. doi:10.1001/archdermatol.2007.50.
  • Nazir SA, Murphy S, Siatkowski RM, et al. Ocular rosacea in childhood. Am J Ophthalmol. 2004;137:138–144. doi:10.1016/S0002-9394(03)00890-0.
  • Akpek EK, Merchant A, Pinar V, et al. Ocular rosacea: patient characteristics and follow-up. Ophthalmology. 1997;104:1863–1867. doi:10.1016/S0161-6420(97)30015-3.
  • Yamasaki K, Gallo RL. The molecular pathology of rosacea. J Dermatol Sci. 2009;55:77–81. doi:10.1016/j.jdermsci.2009.04.007.
  • Steinhoff M, Schauber J, Leyden JJ. New insights into rosacea pathophysiology: a review of recent findings. J Am Acad Dermatol. 2013;69:S15–S26. doi:10.1016/j.jaad.2013.04.045.
  • Daou H, Paradiso M, Hennessy M. Rosacea and the microbiome: a systematic review. Dermatol Ther (Heidelb). 2021;11:1–12. doi:10.1007/s13555-020-00460-1.
  • Aldrich N, Gerstenblith M, Fu P, et al. Genetic vs environmental factors that correlate with Rosacea: a Cohort-based survey of twins. JAMA Dermatol. 2015;151:1213–1219. doi:10.1001/jamadermatol.2015.2230.
  • Abram K, Silm H, Maaroos H-I, et al. Risk factors associated with rosacea. J Eur Acad Dermatol Venereol. 2010;24:565–571. doi:10.1111/j.1468-3083.2009.03472.x.
  • Chang AL, Raber I, Xu J, et al. Assessment of the genetic basis of rosacea by genome-wide association study. J Invest Dermatol. 2015;135:1548–1555. doi:10.1038/jid.2015.53.
  • Awosika O, Oussedik E. Genetic predisposition to Rosacea. Dermatol Clin. 2018;36:87–92. doi:10.1016/j.det.2017.11.002.
  • Yamasaki K, Kanada K, Macleod DT, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Investig Dermatol. 2011;131:688–697. doi:10.1038/jid.2010.351.
  • Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Invest Dermatol Symp Proc. 2011;15:12–5.18. doi:10.1038/jidsymp.2011.4.
  • Park K, Ikushiro H, Seo H, et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1p signaling complex. Proc Natl Acad Sci USA. 2016;113:E1334–42. doi:10.1073/pnas.1504555113.
  • Melnik BC. Rosacea: the blessing of the celts - an approach to pathogenesis through translational research. Acta Derm Venereol. 2016;96:147–156. doi:10.2340/00015555-2220.
  • Rodriguez-Martinez S, Cancino-Diaz JC, Vargas‐Zuñiga LM. LL‐37 regulates the overexpression of vascular endothelial growth factor (VEGF) and c‐IAP‐2 in human keratinocytes. Int J Deramtol. 2008;47:457–462. doi:10.1111/j.1365-4632.2008.03340.x.
  • Reinholz M, Ruzicka T, Steinhoff M, et al. Pathogenese und Klinik der Rosazea als Schlüssel für eine symptomorientierte Therapie Pathogenesis and clinical presentation of rosacea as a key for a symptom-oriented therapy. Jddg. 2016;14: 1610–0379.
  • Gordon YJ. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res. 2005;30:385–394. doi:10.1080/02713680590934111.
  • McDermott AM. The role of antimicrobial peptides at the ocular surface. Ophthalmic Res. 2009;41:60–75. doi:10.1159/000187622.
  • Amir AA, Vender R, Vender R. The role of IL-17 in papulopustular rosacea and future directions. J Cutan Med Surg. 2019;23:635–641. doi:10.1177/1203475419867611.
  • Buhl T, Sulk M, Nowak P, et al. molecular and morphological characterization of inflammatory infiltrate in Rosacea reveals activation of Th1/Th17 pathways. J Invest Dermatol. 2015;135:2198–2208. doi:10.1038/jid.2015.141.
  • Forton FMN. The pathogenic role of demodex mites in Rosacea: a potential therapeutic target already in erythematotelangiectatic Rosacea? Dermatol Ther (Heidelb). 2020;10(6):1229–1253. doi:10.1007/s13555-020-00458-9.
  • Chang Y-S, Huang Y-C. Role of Demodex miteinfestation in rosacea: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77:441–447. doi:10.1016/j.jaad.2017.03.040.
  • Zhang AC, Muntz A, Wang MTM, et al. Ocular Demodex: a systematic review of the clinical literature. Ophthalmic Physiol Opt. 2020;40:389–431. doi:10.1111/opo.12691.
  • Lacey N, Russell-Hallinan A, Zouboulis CC, et al. Demodex mites modulate sebocyte immunereaction: possible role in the pathogenesis of rosacea. Br J Dermatol. 2018;179:420–430. doi:10.1111/bjd.16540.
  • Kulkarni NN, Takahashi T, Sanford JA, et al. Innate immune dysfunction in rosacea promotes photo-sensitivity and vascular adhesion molecule expression. J Invest Dermatol. 2020;140:645–655:e6. doi:10.1016/j.jid.2019.08.436.
  • Sim WJ, Ahl PJ, Connolly JE. Metabolism is central to tolerogenic dendritic cell function. Mediat Inflamm. 2016;2016:2636701. doi:10.1155/2016/2636701.
  • Li D, Romain G, Flamar A-L, et al. Targeting self-and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med. 2012;209:109–121. doi:10.1084/jem.20110399.
  • Webster G, Schaller M, Tan J, et al. Defining treatment success in rosacea as ‘clear’ may provide multiple patient benefits: results of a pooled analysis. J Dermatolog Treat. 2017;28:469–474. doi:10.1080/09546634.2017.1343435.
  • Steinhoff M, Buddenkotte J, Aubert J, et al. Clinical, cellular, and molecular aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc. 2011;15:2–11. doi:10.1038/jidsymp.2011.7.
  • Wong BJ, Fieger SM. Transient receptor potential vanilloid type 1 channels contribute to reflex cutaneous vasodilation in humans. J Appl Physiol. 2012;112:2037–2042. doi:10.1152/japplphysiol.00209.2012.
  • Gouin O, L’Herondelle K, Lebonvallet N, et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8:644–661. doi:10.1007/s13238-017-0395-5.
  • Sulk M, Seeliger S, Aubert J, et al. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol. 2012;132:1253–1262. doi:10.1038/jid.2011.424.
  • Metzler-Wilson K, Toma K, Sammons DL, et al. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients. J Neurophysiol. 2015;114:1530–1537. doi:10.1152/jn.00458.2015.
  • Schwab VD, Sulk M, Seeliger S, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc. 2011;15:53–62. doi:10.1038/jidsymp.2011.6.
  • Aubdool AA, Brain SD. Neurovascular aspects of skin neurogenic inflammation. J Invest Dermatol Symp Proc. 2011;15:33–39. doi:10.1038/jidsymp.2011.8.
  • Wang L, Wang Y-J, Hao D, et al. The theranostics role of mast cells in the pathophysiology of rosacea. Front Med (Lausanne). 2020;28:324.
  • Searle T, Ali FR, Carolides S, Al-Niaimi F. Rosacea and the gastrointestinal system. Australas J Dermatol. 2020;61:307–311. doi:10.1111/ajd.13401.
  • Wang FY, Chi CC. Rosacea, germs, and bowels: a review on gastrointestinal comorbidities and gut-skin axis of Rosacea. Adv Ther. 2021;38(3):1415–1424. doi:10.1007/s12325-021-01624-x.
  • Nam JH, Yun Y, Kim HS, et al. Rosacea and its association with enteral microbiota in Korean females. Exp Dermatol. 2018;27:37–42. doi:10.1111/exd.13398.
  • Kendall SN. Remission of rosacea induced by reduction of gut transit time. Clin Exp Dermatol. 2004;29:297–299. doi:10.1111/j.1365-2230.2004.01461.x.
  • Egeberg A, Weinstock LB, Thyssen EP, et al. Rosacea and gastrointestinal disorders: a population-based cohort study. Br J Dermatol. 2017;176:100–106. doi:10.1111/bjd.14930.
  • Gauwerky K, Klövekorn W, Korting HC, et al. Rosacea. J Dtsch Dermatol Ges. 2009;7:996–1003. doi:10.1111/j.1610-0387.2009.07119.x.
  • Wilkin J, Dahl M, Detmar M, et al. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of Rosacea. J Am Acad Dermatol. 2002;46:584–587. doi:10.1067/mjd.2002.120625.
  • Reinholz M, Tietze JK, Kilian K, et al. Rosacea - S1 guideline. J Dtsch Dermatol Ges. 2013;11:768–80;768-79. doi:10.1111/ddg.12101.
  • Tan J, Almeida LM, Bewley A, et al. Updating the diagnosis, classification and assessment of rosacea: recommendations from the global ROSacea COnsensus (ROSCO) panel. Br J Dermatol. 2017;176:431–438. doi:10.1111/bjd.15122.
  • Tan J, Berg M, Gallo RL, et al. Apllying the phenotype approach for rosacea to practice and research. Br J Dermatol. 2018;179:741–746. doi:10.1111/bjd.16815.
  • Gallo RL, Granstein RD, Kang S, et al. Standard classification and pathophysiology of rosacea: the 2017 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2018;78:148–155. doi:10.1016/j.jaad.2017.08.037.
  • Schaller M, Almeida LMC, Bewley A, et al. Recommendations for rosacea diagnosis, classification and management: update from the global ROSacea COnsensus 2019 panel. Br J Dermatol. 2020;182:1269–1276. doi:10.1111/bjd.18420.
  • Al Balbeesi AO, Almukhadeb EA, Halawani MR, et al. Manifestations of ocular rosacea in females with dark skin types. Saudi J Ophthalmol. 2019;33:135–141. doi:10.1016/j.sjopt.2019.01.006.
  • Tomlinson A, Bron AJ, Korb DR, et al. The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. Invest Ophthalmol Vis Sci. 2011;52:2006–2049. doi:10.1167/iovs.10-6997f.
  • Ghanem VC, Mehra N, Wong S, et al. The prevalence of ocular signs in acne rosacea: comparing patients from ophthalmology and dermatology clinics. Cornea. 2003;22:230–233. doi:10.1097/00003226-200304000-00009.
  • Ravage ZB, Beck AP, Mascai MS, et al. Ocular rosacea can mimic trachoma: a case of cicatrizing conjunctivitis. Cornea. 2004;23:630–631. doi:10.1097/01.ico.0000126329.00100.9d.
  • Nelson JD, Shimazaki J, Benitez-Deö-Castillo JM, et al. The international workshop on meibomian gland dysfunction: report of the definition and classification subcommittee. Invest Ophthalmol Vis Sci. 2011;52:1930–1937. doi:10.1167/iovs.10-6997b.
  • Al-Amry MA, Al-Ghadeer HA. Ocular acne rosacea in tertiary eye center in Saudi Arabia. Int Ophthalmol. 2018;38:59–65. doi:10.1007/s10792-016-0420-3.
  • Saade JS, Abiad B, Jan J, et al. Ocular Rosacea causing corneal melt in an african American patient and a Hispanic patient. Case Rep Ophthalmol Med. 2017;2017:2834031. doi:10.1155/2017/2834031.
  • Palamar M, Degirmenci C, Ertam I, et al. Evaluation of dry eye and meibomian gland dysfunction with meibography in patients with rosacea. Cornea. 2015;34:497–499. doi:10.1097/ICO.0000000000000393.
  • Machalinska A, Zakrzewska A, Markowska A, et al. Morphological and functional evaluation of meibomian gland dysfunction in rosacea patients. Curr Eye Res. 2016;41:1029–1034. doi:10.3109/02713683.2015.1088953.
  • Liang H, Randon M, Michee S, et al. In vivo confocal microscopy evaluation of ocular and cutaneous alterations in patients with rosacea. Br J Ophthalmol. 2017;101:268–274. doi:10.1136/bjophthalmol-2015-308110.
  • Gao YY, Di Pascuale MA, Li W, et al. High prevalence of Demodex in eyelashes with cylindrical dandruff. Invest Ophthalmol Vis Sci. 2005;46:3089–3094. doi:10.1167/iovs.05-0275.
  • Khanal S, Tomlinson A, Diaper CJ. Tear physiology of aqueous deficiency and evaporative dry eye. Optom Vis Sci. 2009;86:1235–1240. doi:10.1097/OPX.0b013e3181bc63cc.
  • Barton K, Monroy D, Nava A, Pflugfelder SC. Inflammatory cytokines in tears of patients with ocular rosacea. Ophthalmology. 1997;104:1868–1874. doi:10.1016/S0161-6420(97)30014-1.
  • Afonso AA, Sobrin L, Monroy DC, et al. fluid gelatinase B activity correlates with IL-1alpha concentration and fluorescein clearance in ocular rosacea. Invest Ophthalmol Vis Sci. 1999;40:2506–2512.
  • Topcu-Yilmaz P, Atakan N, Bozkurt B, et al. Determination of tear and serum inflammatory cytokines in patients with rosacea using multiplex bead technology. Ocul Immunol Inflamm. 2013;21:351–359. doi:10.3109/09273948.2013.795229.
  • Määttä M, Kari O, Tervahartiala T, et al. Tear fluid levels of MMP-8 are elevated in ocular rosacea–treatment effect of oral doxycycline. Graefes Arch Clin Exp Ophthalmol. 2006;244:957–962. doi:10.1007/s00417-005-0212-3.
  • Lam-Franco L, Perfecto-Avalos Y, Patiño-Ramírez BE, et al. IL-1α and MMP-9 tear levels of patients with active ocular rosacea before and after treatment with systemic azithromycin or doxycycline. Ophthalmic Res. 2018;60:109–114. doi:10.1159/000489092.
  • Schaller M, Almeida LM, Bewley A, et al. Rosacea treatment update: recommendations from the global ROSacea COnsensus (ROSCO) panel. Br J Dermatol. 2017;176:465–471. doi:10.1111/bjd.15173.
  • Del Rosso JQ, Tanghetti E, Webster G. Update on the management of Rosacea from the American Acne & Rosacea Society (AARS). J Clin Aesthet Dermatol. 2020;13:17–24.
  • Geerling G, Tauber J, Baudouin C, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on management and treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2011;52:2050–2064. doi:10.1167/iovs.10-6997g.
  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15:575–628. doi:10.1016/j.jtos.2017.05.006.
  • Amescua G, Akpek EK, Farid M, et al. Blepharitis preferred practice pattern. Ophthalmology. 2019;26: P56‐93.
  • Downie LE, Ng SM, Lindsley KB, et al. Omega-3 and omega-6 polyunsaturated fatty acids for dry eye disease. Cochrane Database Syst Rev. 2019;12:CD011016. doi:10.1002/14651858.CD011016.pub2.
  • Quaterman MJ, Johnson DW, Abele DC, Lesher JL, Hull DS, Davis LS. Ocular rosacea: signs, symptoms, and tear studies before and after treatment with doxycycline. Arch Dermatol. 1997;133:49–54. doi:10.1001/archderm.1997.03890370055009.
  • Del Rosso JQ, Webster GF, Jackson M, et al. Two randomized phase III clinical trials evaluating anti-inflammatory dose doxycycline (40-mg doxycycline, USP capsules) administered once daily for treatment of rosacea. J Am Acad Dermatol. 2007;56:791–802. doi:10.1016/j.jaad.2006.11.021.
  • Berlin JM, Winkelman WJ, Worth F. The role of long-term doxycycline 40 mg modified release in the prevention of disease relapse in moderate to severe rosacea. J Am Acad Dermatol. 2015;5:AB11.
  • Van Zuuren EJ, Fedorowicz Z, Tan J. Interventions for rosacea based on the phenotype approach: an updated systematic review including GRADE assessments. Br J Dermatol. 2019;181:65–79. doi:10.1111/bjd.17590.
  • Pfeffer I, Borelli C, Zierhut M, et al. Treatment of ocular rosacea with 40 mg doxycycline in a slow release form. J Dtsch Dermatol Ges. 2011;9:904–907. doi:10.1111/j.1610-0387.2011.07723.x.
  • Sobolewska B, Doycheva D, Deuter C, et al. Treatment of ocular rosacea with once-daily low-dose doxycycline. Cornea. 2014;33:257–260. doi:10.1097/ICO.0000000000000051.
  • van Zuuren EJ, Fedorowicz Z, Carter B, et al. Interventions for rosacea. Cochrane Database Syst Rev. 2015;28:CD003262.
  • Frucht-Pery J, Sagi E, Hemo I, Ever-Hadani P. Efficacy of doxycycline and tetracycline in ocular rosacea. Am J Ophthalmol. 1993;116:88–92. doi:10.1016/S0002-9394(14)71750-7.
  • Stone DU, Chodosh J. Oral tetracyclines for ocular rosacea: an evidence-based review of the literature. Cornea. 2004;23:106–109. doi:10.1097/00003226-200401000-00020.
  • Valentín S, Morales A, Sánchez JL, et al. Safety and efficacy of doxycycline in the treatment of rosacea. Clin Cosmet Investig Dermatol. 2009;2:129–140. doi:10.2147/ccid.s4296.
  • Bakar O, Demircay Z, Toker E, et al. Ocular signs, symptoms and tear function tests of papulopustular rosacea patients receiving azithromycin. J Eur Acad Dermatol Venreol. 2009;23:544–549. doi:10.1111/j.1468-3083.2009.03132.x.
  • Akhyani M, Ehsani AH, Ghiasi M, et al. Comparison of efficacy of azithromycin vs. doxycycline in the treatment of rosacea: a randomized open clinical trial. Int J Dermatol. 2008;47:284–288. doi:10.1111/j.1365-4632.2008.03445.x.
  • Leoni S, Mesplie N, Aitali F, et al. Metronidazole: alternative treatment for ocular and cutaneous rosacea in the pediatric population. J Fr Ophthalmol. 2011;34:703–710.
  • Doan S, Gabison E, Chiambaretta F, et al. Efficacy of azithromycin 1.5% eye drops in childhood ocular rosacea with phlyctenular blepharokeratoconjunctivitis. J Ophthalmic Inflamm Infect. 2013;3:38. doi:10.1186/1869-5760-3-38.
  • Starosta DA, Lorenz B. Pediatric ocular rosacea effectively treated with topical 1.5% azithromycin eye drops. Ophthalmologe. 2021;118:68–73. doi:10.1007/s00347-020-01279-z.
  • Mantelli F, Zazzo A, Di Sacchetti M, et al. Topical azithromycin as a novel treatment for ocular rosacea. Ocul Immunol Inflamm. 2013;21:371–377. doi:10.3109/09273948.2013.801991.
  • Tao T, Tao L. Systematic review and meta-analysis of treating meibomian gland dysfunction with azithromycin. Eye (Lond). 2020;34:1797–1808. doi:10.1038/s41433-020-0876-2.
  • Stein Gold L, Kircik L, Fowler J, et al. Efficacy and safety of ivermectin 1 % cream in treatment of papulopustular rosacea: results of two randomized, double‐blind, vehicle‐controlled pivotal studies. J Drugs Dermatol. 2014;13:316–323.
  • Ebbelaar CCF, Venema AW, Van Dijk MR. Topical ivermectin in the treatment of papulopustular rosacea: a systematic review of evidence and clinical guideline recommendation. Dermatol Ther. 2018;8:379–387. doi:10.1007/s13555-018-0249-y.
  • Siddiqui K, Stein Gold L, Gill J. The efficacy, safety, and tolerability of ivermectin compared with current topical treatments for the inflammatory lesions of rosacea: a network meta‐analysis. Springer Plus. 2016;5:1151. doi:10.1186/s40064-016-2819-8.
  • Sobolewska B, Doycheva D, Deuter CM, Schaller M, Zierhut M. Efficacy of topical ivermectin for the treatment of cutaneous and ocular rosacea. Ocul Immunol Inflamm. 2020;7:1–5.
  • Schechter BA, Katz RS, Friedman LS. Efficacy of topical cyclosporine for the treatment of ocular rosacea. Adv Ther. 2009;26:651–659. doi:10.1007/s12325-009-0037-2.
  • Ong HS, Patel KV, Dart JK, et al. Topical cyclosporine A as a steroid-sparing agent for ocular rosacea. Acta Ophthalmol. 2017;95:e158–e159. doi:10.1111/aos.13137.
  • Arman A, Demirseren DD, Rakmaz R. Treatment of ocular rosacea: comparative study of topical cyclosporine and oral doxycycline. Int J Ophthalmol. 2015;18:544–549.
  • Bilgin B, Karadag AS. Effects of combined oral doxycycline and topical cyclosporine treatment on ocular signs, symptoms, and tear film parameters in rosacea patients. Arq Bras Oftalmol. 2018;81:466–470. doi:10.5935/0004-2749.20180093.
  • de Paiva CS, Stephen C, Pflugfelder SC, et al. Topical cyclosporine A therapy for dry eye syndrome. Cochrane Database Syst Rev. 2019;13(9):CD010051.
  • Seo KY, Kang SM, Ha DY, et al. Long-term effects of intense pulsed light treatment on the ocular surface in patients with rosacea-associated meibomian gland dysfunction cont lens anterior eye. Contact Lens Anterior Eye. 2018;41:430–435. doi:10.1016/j.clae.2018.06.002.
  • Liu S, Tang S, Dong H, et al. Intense pulsed light for the treatment of meibomian gland dysfunction: a systematic review and meta-analysis. Exp Ther Med. 2020;20:1815–1821. doi:10.3892/etm.2020.8838.
  • Berguiga M, Mameletzi E, Nicolas M, et al. Long-term follow-up of multilayer amniotic membrane transplantation (MLAMT) for non-traumatic corneal perforations or deep ulcers with descemetocele. Klin Monbl Augenheikd. 2013;230:413–418. doi:10.1055/s-0032-1328394.
  • Muftuoglu IK, Akova YA. Clinical findings, follow-up and treatment results in patients with ocular rosacea. Turk J Ophthalmol. 2016;46:1–6. doi:10.4274/tjo.48902.
  • Jain AK, Sukhija J. Amniotic membrane transplantation in ocular rosacea. Ann Ophthalmol (Skokie). 2007;39:71–73. doi:10.1007/BF02697331.
  • Park JC, Habib NE. Tectonic lamellar keratoplasty: simplified management of corneal perforations with an automated microkeratome. Can J Ophthalmol. 2015;50:80–84. doi:10.1016/j.jcjo.2014.09.011.
  • Gracner B, Pahor D, Gracner T. Repair of an extensive corneoscleral perforation in a case of ocular rosacea with a keratoplasty. Klin Monbl Augenheilkd. 2006;223:841–843. doi:10.1055/s-2006-926720.
  • Al Arfaj K, Al Zamil W. Spontaneous corneal perforation in ocular rosacea. Middle East Afr J Ophthalmol. 2010;17:186–188. doi:10.4103/0974-9233.63070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.