15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of optical and self-healing properties of Titania/ionic liquid/poly(butyl methacrylate) hybrid material based on thermally reversible Diels–Alder chemistry

ORCID Icon, , , &
Received 14 Jan 2024, Accepted 18 Apr 2024, Published online: 28 Apr 2024

References

  • Chung DDL. A review of multifunctional polymer-matrix structural composites, compos. B Eng. 2019;160:644–660. doi: 10.1016/j.compositesb.2018.12.117
  • Gaikwad N, Gadekar P, Kandasubramanian B, et al. Advanced polymer-based materials and mesoscale models to enhance the performance of multifunctional supercapacitors. J Energy Storage. 2023;58:106337. doi: 10.1016/j.est.2022.106337
  • Wu B, Xu X, Tang Y, et al., Multifunctional optical polymeric films with photochromic, fluorescent, and ultra-long room temperature phosphorescent properties, Adv Opt Mater. 2021;9: 2101266. 10.1002/adom.202101266.
  • Pan X, Debije MG, Schenning APHJ. High thermal conductivity in anisotropic aligned polymeric materials. ACS Appl Polym Mater. 2021;3:578–587. doi: 10.1021/acsapm.0c01340
  • White SR, Sottos NR, Geubelle PH, et al. Autonomic healing of polymer composites. Nature. 2001;409(6822):794–797. doi: 10.1038/35057232
  • Nakahata M, Mori S, Takashima Y, et al. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem. 2006;1(5):766–775. https://www.cell.com/chem/pdf/S2451-9294(16)30158-9.pdf
  • Althues H, Henle J, Kaskel S. Functional inorganic nanofillers for transparent polymers. Chem Soc Rev. 2007;36:1454–1465. doi: 10.1039/B608177K
  • Kyprianidou-Leodidou T, Caseri W, Suter UW. Size variation of PbS particles in high-refractive-index nanocomposites. J Phys Chem. 1994;98:8992–8997. doi: 10.1021/j100087a029
  • Walter C. Nanocomposites of polymers and metals or semiconductors: historical background and optical properties, Macromol. Macromol Rapid Commun. 2001;21(11):705–722. doi: 10.1002/1521-3927(20000701)21:11<705:AID-MARC705>3.0.CO;2-3
  • Yang Y, Urban MW. Self-healing polymeric materials. Chem Soc Rev. 2013;42:7446–7467. doi: 10.1039/C3CS60109A
  • Wu DY, Meure S, Soloman D. Self-healing polymeric materials: a review of recent developments, prog. Polym Sci. 2008;33(5):479–522. doi: 10.1016/j.progpolymsci.2008.02.001
  • Feula A, Pethybridge A, Giannakopoulos I, et al. A thermoreversible supramolecular polyurethane with excellent healing ability at 45 °C. Macromolecules. 2015;48(17):6132–6141. doi: 10.1021/acs.macromol.5b01162
  • Ghosh B, Urban MW. Self-repairing oxetane-substituted chitosan polyurethane networks. Science. 2009;323(5920):1458–1460. doi: 10.1126/science.1167391
  • Adachi K, Achimuthu AK, Chujo Y. Synthesis of Organic−Inorganic polymer hybrids controlled by Diels−Alder reaction. Macromolecules. 2004;37(26):9793–9797. doi: 10.1021/ma0400618
  • Hara S, Ishizu M, Watanabe S, et al. Improvement of the transparency, mechanical, and shape memory properties of polymethylmethacrylate/titania hybrid films using tetrabutylphosphonium chloride. Polym Chem. 2019;10(35):4779–4788. doi: 10.1039/C9PY00783K
  • Hara S, Tomono M, Fukumoto K, et al. Melt-moldable copolymethacrylate/titania thermoreversible polymer networks with shape memory. ACS Appl Polym Mater. 2020;2(12):5654–5663. doi: 10.1021/acsapm.0c00967
  • Ikake H, Hara S, Kurebayashi S, et al. Development of a magnetic hybrid material capable of photoinduced phase separation of iron chloride by shape memory and photolithography. J Mater Chem C. 2022;10(20):7849–7856. doi: 10.1039/D1TC06055D
  • Ikake H, Hara S, Kubodera M, et al. Macroscopic property evaluation of titania nanocomposite polymer capable of drawing double-network macrostructure using photolithography. ACS Macro Lett. 2023;12(7):943–948. doi: 10.1021/acsmacrolett.3c00230
  • Wulf M, Grundke K, Kwok DY, et al. Influence of different alkyl side chains on solid surface tension of polymethacrylates. J Appl Polym Sci. 2000;77(11):2493–2504. doi: 10.1002/1097-4628(20000912)77:11<2493:AID-APP19>3.0.CO;2-H
  • Safaei A, Terryn S, Vanderborght B, et al. Toughening and stiffening in thermoreversible Diels–Alder polymer network blends. Macromolecules. 2023;56(11):4325–4335. doi: 10.1021/acs.macromol.2c02558
  • Wang A, Niu H, He Z, et al. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers. Polym Chem. 2017;8(31):4494–4502. doi: 10.1039/C7PY00896A
  • Chen X, Dam MA, Ono K, et al. A thermally re-mendable cross-linked polymeric material. Science. 2002;295(5560):1698–1702. doi: 10.1126/science.1065879
  • Davidson JR, Appuhamillage GA, Thompson CM, et al. Design paradigm utilizing reversible Diels–Alder reactions to enhance the mechanical properties of 3D printed materials. ACS Appl Mater Interfaces. 2016;8(26):16961–16966. doi: 10.1021/acsami.6b05118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.