1,113
Views
2
CrossRef citations to date
0
Altmetric
Full Critical Review

Critical material designs for mucus- and mucosa-penetrating oral insulin nanoparticle development

ORCID Icon, ORCID Icon & ORCID Icon
Pages 121-139 | Received 12 Aug 2021, Accepted 31 Jan 2022, Published online: 24 Feb 2022

References

  • Mekala KC, Bertoni AG. Epidemiology of diabetes mellitus. In: Orlando G, Piemonti L, Ricordi C, Stratta RJ, Gruessner RWG, editors. Transplantation, bioeng. regen. endocr. pancreas. London: Elsevier; 2020. p. 49–58. doi:10.1016/B978-0-12-814833-4.00004-6
  • Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016;4:525–536. doi:10.1016/S2213-8587(15)00482-9.
  • World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the diagnosis of diabetes mellitus abbreviated report of a WHO Consultation, 2011 [cited 8 January 2021]. Available from: https://www.who.int/cardiovascular_diseases/report-hba1c_2011_edited.pdf.
  • Van Loocke M, Battelino T, Tittel SR, et al. Lower HbA1c targets are associated with better metabolic control. Eur J Pediatr 2021: 1–8. doi:10.1007/s00431-020-03891-2.
  • Hogrebe NJ, Augsornworawat P, Maxwell KG, et al. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 2020;38:460–470. doi:10.1038/s41587-020-0430-6.
  • Lam ATL, Reuveny S, Oh SK-W. Human mesenchymal stem cell therapy for cartilage repair: review on isolation, expansion, and constructs. Stem Cell Res 2020;44:101738. doi:10.1016/j.scr.2020.101738.
  • Fujii S, Miura Y, Fujishiro A, et al. Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations. Stem Cells. 2018;36:434–445. doi:10.1002/stem.2759.
  • Edgerton DS, Kraft G, Smith M, et al. Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight. 2017;2:e91863. doi:10.1172/jci.insight.91863.
  • Souto EB, Souto SB, Campos JR, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules. 2019;24:1–29. doi:10.3390/molecules24234209.
  • Misnikova IV, Gubkina VA, Lakeeva TS, et al. A randomized controlled trial to assess the impact of proper insulin injection technique training on glycemic control. Diabetes Ther 2017;8:1309–1318. doi:10.1007/s13300-017-0315-y.
  • Wibisono AH, Lestari AN, Sorensen L, et al. Fear of injections among people with type 2 diabetes: overview of the problem. J Diabetes Nurs. 2017;21:91–95.
  • Zhang Y, Yu J, Kahkoska AR, et al. Advances in transdermal insulin delivery. Adv Drug Deliv Rev 2019;139:51–70. doi:10.1016/j.addr.2018.12.006.
  • Harjoh N, Wong TW, Caramella C. Transdermal insulin delivery with microwave and fatty acids as permeation enhancers. Int J Pharm 2020;584:119416. doi:10.1016/j.ijpharm.2020.119416.
  • Matteucci E, Giampietro O, Covolan V, et al. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des Devel Ther 2015;9:3109–3118. doi:10.2147/DDDT.S79322.
  • Heinemann L. Inhaled insulin: dead horse or rising phoenix? J Diabetes Sci Technol 2018;12:239–242. doi:10.1177/1932296817748231.
  • Rhea EM, Salameh TS, Banks WA. Routes for the delivery of insulin to the central nervous system: a comparative review. Exp Neurol 2019;313:10–15. doi:10.1016/j.expneurol.2018.11.007.
  • Wong TW, Dhanawat M, Rathbone MJ. Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development. Expert Opin Drug Deliv 2014;11(9):1419–1434. doi:10.1517/17425247.2014.924499.
  • Alfatama M, Lim LY, Wong TW. Alginate-C18 conjugate nanoparticles loaded in tripolyphosphate-cross-linked chitosan-oleic acid conjugate-coated calcium alginate beads as oral insulin carrier. Mol Pharm 2018;15:3369–3382. doi:10.1021/acs.molpharmaceut.8b00391.
  • Gedawy A, Martinez J, Al-Salami H, et al. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol 2018;70:197–213. doi:10.1111/jphp.12852.
  • Wajchenberg BL. β-Cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007;28:187–218. doi:10.1210/10.1210/er.2006-0038.
  • Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv 2018;25:1694–1705. doi:10.1080/10717544.2018.1501119.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016;33:2373–2387. doi:10.1007/s11095-016-1958-5.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016;1:10–29. doi:10.1002/btm2.10003.
  • Liu C, Xu H, Sun Y, et al. Design of virus-mimicking polyelectrolyte complexes for enhanced oral insulin delivery. J Pharm Sci 2019;108:3408–3415. doi:10.1016/j.xphs.2019.05.034.
  • Liu M, Zhang J, Zhu X, et al. Efficient mucus permeation and tight junction opening by dissociable ‘mucus-inert’ agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77. doi:10.1016/j.jconrel.2015.12.008.
  • Wu J, Zheng Y, Liu M, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10:9916–9928. doi:10.1021/acsami.7b16524.
  • Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract – influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol 2020;11:1–22. doi:10.3389/fphar.2020.00524.
  • Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release. 2017;264:247–275. doi:10.1016/j.jconrel.2017.09.003.
  • Xie J, Li A, Li J. Advances in pH-sensitive polymers for smart insulin delivery. Macromol Rapid Commun 2017;38:1700413. doi:10.1002/marc.201700413.
  • Goodman BE. Insights into digestion and absorption of major nutrients in humans. Am J Physiol – Adv Physiol Educ 2010;34:44–53. doi:10.1152/advan.00094.2009.
  • Wacławczyk D, Silberring J, Grasso G. The insulin-degrading enzyme as a link between insulin and neuropeptides metabolism. J Enzyme Inhib Med Chem 2021;36:183–187. doi:10.1080/14756366.2020.1850712.
  • Maianti JP, McFedries A, Foda ZH, et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature. 2014;511:94–98. doi:10.1038/nature13297.
  • Cournarie F, Savelli M-P, Rosilio V, et al. Insulin-loaded W/O/W multiple emulsions: comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. Eur J Pharm Biopharm 2004;58:477–482. doi:10.1016/j.ejpb.2004.03.024.
  • Agarwal V, Reddy IK, Khan MA. Oral delivery of proteins: effect of chicken and duck ovomucoid on the stability of insulin in the presence of α-chymotrypsin and trypsin. Pharm Pharmacol Commun 2000;6:223–227. doi:10.1211/146080800128735935.
  • Wong TW. Design of oral insulin delivery systems. J Drug Target 2010;18:79–92. doi:10.3109/10611860903302815.
  • Chuang E-Y, Lin K-J, Su F-Y, et al. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. J Control Release. 2013;169:296–305. doi:10.1016/j.jconrel.2012.11.011.
  • Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal 2015;23:351–358. doi:10.1016/j.jfda.2015.01.007.
  • Sladek S, McCartney F, Eskander M, et al. An enteric-coated polyelectrolyte nanocomplex delivers insulin in rat intestinal instillations when combined with a permeation enhancer. Pharmaceutics. 2020;12:1–25. doi:10.3390/pharmaceutics12030259.
  • National Institute of Health. Clinical trials, 2020 [cited 16 December 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT02496000.
  • Eldor R, Arbit E, Corcos A, et al. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: a pilot study. PLoS One. 2013;8:e59524. doi:10.1371/journal.pone.0059524.
  • Hollander D, Kaunitz JD. The ‘leaky gut’: tight junctions but loose associations? Dig Dis Sci 2020;65:1277–1287. doi:10.1007/s10620-019-05777-2.
  • Barmeyer C, Schulzke JD, Fromm M. Claudin-related intestinal diseases. Semin Cell Dev Biol 2015;42:30–38. doi:10.1016/j.semcdb.2015.05.006.
  • Fan W, Xia D, Zhu Q, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 2018;151:13–23. doi:10.1016/j.biomaterials.2017.10.022.
  • Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 2018;11:1551–1557. doi:10.1038/s41385-018-0039-y.
  • Cording J, Berg J, Käding N, et al. In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci 2013;126:554–564. doi:10.1242/jcs.114306.
  • Pearce SC, Al-Jawadi A, Kishida K, et al. Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biol 2018;16:19. doi:10.1186/s12915-018-0481-z.
  • Coopman P, Djiane A. Adherens junction and E-cadherin complex regulation by epithelial polarity. Cell Mol Life Sci 2016;73:3535–3553. doi:10.1007/s00018-016-2260-8.
  • Taverner A, Dondi R, Almansour K, et al. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation. J Control Release. 2015;210:189–197. doi:10.1016/j.jconrel.2015.05.270.
  • Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2018;19:313–326. doi:10.1038/nrm.2017.132.
  • Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017;46:4218–4244. doi:10.1039/C6CS00636A.
  • Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 2018;120:775–782. doi:10.1016/j.ijbiomac.2018.08.152.
  • Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 2018;13:339. doi:10.1186/s11671-018-2728-6.
  • King JS, Kay RR. The origins and evolution of macropinocytosis. Philos Trans R Soc, B 2019;374:20180158. doi:10.1098/rstb.2018.0158.
  • Keeling E, Lotery A, Tumbarello D, et al. Impaired cargo clearance in the retinal pigment epithelium (RPE) underlies irreversible blinding diseases. Cells. 2018;7:16. doi:10.3390/cells7020016.
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10:513–525. doi:10.1038/nrm2728.
  • Sandin P, Fitzpatrick LW, Simpson JC, et al. High-speed imaging of rab family small GTpases reveals rare events in nanoparticle trafficking in living cells. ACS Nano. 2012;6:1513–1521. doi:10.1021/nn204448x.
  • Al-Hilal TA, Chung SW, Alam F, et al. Functional transformations of bile acid transporters induced by high-affinity macromolecules. Sci Rep 2014;4:4163. doi:10.1038/srep04163.
  • Green R, Allen LH, Bjørke-Monsen A-L, et al. Vitamin B12 deficiency. Nat Rev Dis Prim 2017;3:17040. doi:10.1038/nrdp.2017.40.
  • Mertens KL, Kalsbeek A, Soeters MR, et al. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci 2017;11:617. doi:10.3389/fnins.2017.00617.
  • Zhao R, Matherly LH, Goldman ID. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 2009;11:e4. doi:10.1017/S1462399409000969.
  • Pyzik M, Sand KMK, Hubbard JJ, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol 2019;10:1540. doi:10.3389/fimmu.2019.01540.
  • Macierzanka A, Mackie AR, Krupa L. Permeability of the small intestinal mucus for physiologically relevant studies: impact of mucus location and ex vivo treatment. Sci Rep 2019;9:17516. doi:10.1038/s41598-019-53933-5.
  • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011;9:356–368. doi:10.1038/nrmicro2546.
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012;64:557–570. doi:10.1016/j.addr.2011.12.009.
  • Loonen LM, Stolte EH, Jaklofsky MT, et al. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol 2014;7:939–947. doi:10.1038/mi.2013.109.
  • Nordgård CT, Draget KI. Dynamic responses in small intestinal mucus: relevance for the maintenance of an intact barrier. Eur J Pharm Biopharm 2015;95:144–150. doi:10.1016/j.ejpb.2015.01.024.
  • Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep 2019;7:3–12. doi:10.1093/gastro/goy052.
  • Celli JP, Turner BS, Afdhal NH, et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci 2009;106:14321–14326. doi:10.1073/pnas.0903438106.
  • Boegh M, Nielsen HM. Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties. Basic Clin Pharmacol Toxicol 2015;116:179–186. doi:10.1111/bcpt.12342.
  • Round AN, Rigby NM, Garcia de la Torre A, et al. Lamellar structures of MUC2-rich mucin: a potential role in governing the barrier and lubricating functions of intestinal mucus. Biomacromolecules 2012;13:3253–3261. doi:10.1021/bm301024x.
  • Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 2017;532:555–572. doi:10.1016/j.ijpharm.2017.09.018.
  • Georgiades P, di Cola E, Heenan RK, et al. A combined small-angle X-ray and neutron scattering study of the structure of purified soluble gastrointestinal mucins. Biopolym 2014;101:1154–1164. doi:10.1002/bip.22523.
  • Banerjee A, Lee J, Mitragotri S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng Transl Med 2016;1:338–346. doi:10.1002/btm2.10015.
  • Bhattacharjee S, Mahon E, Harrison SM, et al. Nanoparticle passage through porcine jejunal mucus: microfluidics and rheology. Nanomed Nanotechnol Biol Med 2017;13:863–873. doi:10.1016/j.nano.2016.11.017.
  • Nafee N, Forier K, Braeckmans K, et al. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: proof of concept, challenges and pitfalls. Eur J Pharm Biopharm 2018;124:125–137. doi:10.1016/j.ejpb.2017.12.017.
  • Sotres J, Jankovskaja S, Wannerberger K, et al. Ex-vivo force spectroscopy of intestinal mucosa reveals the mechanical properties of mucus blankets. Sci Rep 2017;7:1–14. doi:10.1038/s41598-017-07552-7.
  • Quiñones JP, Peniche H, Peniche C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers 2018;10:1–32. doi:10.3390/polym10030235.
  • Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69:2232–2243. doi:10.1136/gutjnl-2020-322260.
  • Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev 2018;124:3–15. doi:10.1016/j.addr.2017.09.023.
  • Meldrum OW, Yakubov GE, Bonilla MR, et al. Mucin gel assembly is controlled by a collective action of non-mucin proteins, disulfide bridges, Ca2+-mediated links, and hydrogen bonding. Sci Rep 2018;8:5802. doi:10.1038/s41598-018-24223-3.
  • Barbosa FC, da Silva MC, da Silva HN, et al. Progress in the development of chitosan based insulin delivery systems: a systematic literature review. Polymers 2020;12:2499. doi:10.3390/polym12112499.
  • Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev 2005;57:1569–1582. doi:10.1016/j.addr.2005.07.002.
  • Mumuni MA, Kenechukwu FC, Ofokansi KC, et al. Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment. Carbohydr Polym 2020;229:115506. doi:10.1016/j.carbpol.2019.115506.
  • I. Pereira de Sousa, T. Moser, C. Steiner, B. Fichtl and A. Bernkop-Schnürch. Insulin loaded mucus permeating nanoparticles: addressing the surface characteristics as feature to improve mucus permeation. Int J Pharm 2016;500:236–244. doi:10.1016/j.ijpharm.2016.01.022.
  • Seyam S, Nordin NA, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals. 2020;13:307. doi:10.3390/ph13100307.
  • Mi FL, Wu YY, Lin YH, et al. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 2008;19:1248–1255. doi:10.1021/bc800076n.
  • Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 2009;20:1057–1079. doi:10.1007/s10856-008-3659-z.
  • Jintapattanakit A, Junyaprasert VB, Kissel T. The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci 2009;98:4818–4830. doi:10.1002/jps.21783.
  • Yin L, Ding J, He C, et al. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30:5691–5700. doi:10.1016/j.biomaterials.2009.06.055.
  • Macierzanka A, Mackie AR, Bajka BH, et al. Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: impact of mucus structure and extracellular DNA. PLoS One. 2014;9:e95274. doi:10.1371/journal.pone.0095274.
  • Presas E, McCartney F, Sultan E, et al. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J Control Release. 2018;286:402–414. doi:10.1016/j.jconrel.2018.07.045.
  • Cheng H, Zhang X, Qin L, et al. Design of self-polymerized insulin loaded poly(n-butylcyanoacrylate) nanoparticles for tunable oral delivery. J Control Release. 2020;321:641–653. doi:10.1016/j.jconrel.2020.02.034.
  • Maslanka Figueroa S, Fleischmann D, Goepferich A. Biomedical nanoparticle design: what we can learn from viruses. J Control Release. 2021;329:552–569. doi:10.1016/j.jconrel.2020.09.045.
  • Lee C, Hwang HS, Lee S, et al. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater 2017;29:1605563. doi:10.1002/adma.201605563.
  • Bourganis V, Karamanidou T, Kammona O, et al. Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. Eur J Pharm Biopharm 2017;111:44–60. doi:10.1016/j.ejpb.2016.11.005.
  • Khutoryanskiy VK. Beyond PEGylation: alternative surface-modifiction of nanoparticles with mucus-inert biomaterls. Adv Drug Deliv Rev 2018;124:140–149. doi:10.1016/j.addr.2017.07.015.
  • Xu Q, Ensign LM, Boylan NJ, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9:9217–9227. doi:10.1021/acsnano.5b03876.
  • Skoulas D, Stuettgen V, Gaul R, et al. Amphiphilic Star Polypept(o)ides as nanomeric vectors in mucosal drug delivery. Biomacromolecules. 2020;21:2455–2462. doi:10.1021/acs.biomac.0c00381.
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61:158–171. doi:10.1016/j.addr.2008.11.002.
  • Mansfield EDH, de la Rosa VR, Kawolczyk RM, et al. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier. Biomater Sci 2016;4:1318–1327. doi:10.1039/c6bm00375c.
  • Dünnhaupt S, Kammona O, Waldner C, et al. Nano-carrier systems: strategies to overcome the mucus gel barrier. Eur J Pharm Biopharm 2015;96:447–453. doi:10.1016/j.ejpb.2015.01.022.
  • Su FY, Lin KJ, Sonaje K, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33:2801–2811. doi:10.1016/j.biomaterials.2011.12.038.
  • Ding Y, Wang Q, Liu G, et al. Cholesterol moieties as building blocks for assembling nanoparticles to achieve effective oral delivery of insulin. Biomater Sci 2020;8:3979–3993. doi:10.1039/D0BM00577K.
  • Liu C, Shan W, Liu M, et al. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Deliv 2016;23:2015–2025. doi:10.3109/10717544.2015.1058433.
  • Gallagher EJ, LeRoith D. Hyperinsulinaemia in cancer. Nat Rev Cancer. 2020;20:629–644. doi:10.1038/s41568-020-0295-5.
  • Olatunde A, Nigam M, Singh RK, et al. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021;21:499. doi:10.1186/s12935-021-02202-5.
  • Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016;106:256–276. doi:10.1016/j.addr.2016.07.007.
  • Ukai H, Iwasa K, Deguchi T, et al. Enhanced intestinal absorption of insulin by Capryol 90, a novel absorption enhancer in rats: implications in oral insulin delivery. Pharmaceutics. 2020;12:462. doi:10.3390/pharmaceutics12050462.
  • Ukai H, Kawagoe A, Sato E, et al. Propylene glycol caprylate as a novel potential absorption enhancer for improving the intestinal absorption of insulin: efficacy, safety, and absorption-enhancing mechanisms. J Pharm Sci 2020;109:1483–1492. doi:10.1016/j.xphs.2019.12.012.
  • Turner JR, Buschmann MM, Romero-Calvo I, et al. The role of molecular remodeling in differential regulation of tight junction permeability. Semin Cell Dev Biol 2014;36:204–212. doi:10.1016/j.semcdb.2014.09.022.
  • Tian H, He Z, Sun C, et al. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthc Mater 2018;7:1800285. doi:10.1002/adhm.201800285.
  • Zhou S, Deng H, Zhang Y, et al. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral delivery of insulin. Mol Pharm 2020;17:239–250. doi:10.1021/acs.molpharmaceut.9b00971.
  • Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2009;41:349–369. doi:10.1016/j.biocel.2008.09.027.
  • Feng C, Sun G, Wang Z, et al. Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. Eur J Pharm Biopharm 2014;87:197–207. doi:10.1016/j.ejpb.2013.11.007.
  • Wang J, Xu M, Cheng X, et al. Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery. Carbohydr Polym 2016;136:867–874. doi:10.1016/j.carbpol.2015.09.103.
  • Shariatinia Z. Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol 2018;120:1406–1419. doi:10.1016/j.ijbiomac.2018.09.131.
  • Bashyal S, Noh G, Keum T, et al. Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J Pharm Investig 2016;46:205–220. doi:10.1007/s40005-016-0253-0.
  • Silva S, Almeida A, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomolecules 2019;9:22. doi:10.3390/biom9010022.
  • Kristensen M, Nielsen HM. Cell-penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic Clin Pharmacol Toxicol 2016;118:99–106. doi:10.1111/bcpt.12515.
  • Elmquist A, Lindgren M, Bartfai T, et al. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 2001;269:237–244. doi:10.1006/excr.2001.5316.
  • Zhu S, Chen S, Gao Y, et al. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and engrailed secretion peptide (Sec). Drug Deliv 2016;23:1980–1991. doi:10.3109/10717544.2015.1043472.
  • Chen S, Guo F, Deng T, et al. Eudragit S100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS PharmSciTech 2017;18:1277–1287. doi:10.1208/s12249-016-0594-z.
  • Cohen MJ, Chirico WJ, Lipke PN. Through the back door: unconventional protein secretion. Cell Surf 2020;6:100045. doi:10.1016/j.tcsw.2020.100045.
  • Dupont E, Prochiantz A, Joliot A. Identification of a signal peptide for unconventional secretion. J Biol Chem 2007;282:8994–9000. doi:10.1074/jbc.M609246200.
  • Huang Y, Yang C, feng Xu X, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020;41:1141–1149. doi:10.1038/s41401-020-0485-4.
  • Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol 2020;11:101–123. doi:10.3762/bjnano.11.10.
  • Xu Y, Zheng Y, Wu L, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;10:9315–9324. doi:10.1021/acsami.8b00507.
  • de Jong H, Bonger KM, Löwik DWPM. Activatable cell-penetrating peptides: 15 years of research. RSC Chem Biol 2020;1:192–203. doi:10.1039/D0CB00114G.
  • Petrus AK, Fairchild TJ, Doyle RP. Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs. Angew Chem Int Ed 2009;48:1022–1028. doi:10.1002/anie.200800865.
  • Russell-Jones GJ, Westwood SW, Habberfield AD. Vitamin B12 mediated oral delivery systems for granulocyte-colony stimulating factor and erythropoietin. Bioconjug Chem 1995;6:459–465. doi:10.1021/bc00034a016.
  • Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release. 2007;117:421–429. doi:10.1016/j.jconrel.2006.12.003.
  • Chalasani KB, Russell-Jones GJ, Jain AK, et al. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release. 2007;122:141–150. doi:10.1016/j.jconrel.2007.05.019.
  • Verma A, Sharma S, Gupta PK, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater 2016;31:288–300. doi:10.1016/j.actbio.2015.12.017.
  • Pridgen EM, Alexis F, Kuo TT, et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci Transl Med 2013;5:213ra167. doi:10.1126/scitranslmed.3007049.
  • Shrestha N, Araújo F, Shahbazi M-A, et al. Thiolation and cell-penetrating peptide surface functionalization of porous silicon nanoparticles for oral delivery of insulin. Adv Funct Mater 2016;26:3405–3416. doi:10.1002/adfm.201505252.
  • Azevedo C, Nilsen J, Grevys A, et al. Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin. J Control Release. 2020;327:161–173. doi:10.1016/j.jconrel.2020.08.005.
  • Tan X, Yin N, Liu Z, et al. Hydrophilic and electroneutral nanoparticles to overcome mucus trapping and enhance oral delivery of insulin. Mol Pharm 2020;17:3177–3191. doi:10.1021/acs.molpharmaceut.0c00223.
  • Liu M, Wu L, Shan W, et al. Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. J Mater Chem B. 2018;6:593–601. doi:10.1039/c7tb02450a.
  • Dawson PA. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol 2011;201:169–203. doi:10.1007/978-3-642-14541-4_4.
  • Tamai I. Oral drug delivery utilizing intestinal OATP transporters. Adv Drug Deliv Rev 2012;64:508–514. doi:10.1016/j.addr.2011.07.007.
  • Han X, Lu Y, Xie J, et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat Nanotechnol 2020;15:605–614. doi:10.1038/s41565-020-0693-6.
  • Lu Y, Yue Z, Xie J, et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng 2018;2:318–325. doi:10.1038/s41551-018-0234-x.
  • García B, Merayo-Lloves J, Martin C, et al. Surface proteoglycans as mediators in bacterial pathogens infections. Front Microbiol 2016;7:220. doi:10.3389/fmicb.2016.00220.
  • Singh SB, Carroll-Portillo A, Coffman C, et al. Intestinal alkaline phosphatase exerts anti-inflammatory effects against lipopolysaccharide by inducing autophagy. Sci Rep 2020;10:1–15. doi:10.1038/s41598-020-59474-6.
  • Bonengel S, Prüfert F, Perera G, et al. Polyethylene imine-6-phosphogluconic acid nanoparticles – a novel zeta potential changing system. Int J Pharm 2015;483:19–25. doi:10.1016/j.ijpharm.2015.01.041.
  • He Z, Santos JL, Tian H, et al. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials. 2017;130:28–41. doi:10.1016/j.biomaterials.2017.03.028.
  • Agrawal AK, Harde H, Thanki K, et al. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 2014;15:350–360. doi:10.1021/bm401580k.
  • Yazdi JR, Tafaghodi M, Sadri K, et al. Folate targeted PEGylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. Coll Surf, B Biointerf 2020;194:111203. doi:10.1016/j.colsurfb.2020.111203.
  • Song M, Wang H, Chen K, et al. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. Artif Cells, Nanomed Biotechnol 2018;46:S774–S782. doi:10.1080/21691401.2018.1511575.
  • Li M, Sun Y, Ma C, et al. Design and investigation of penetrating mechanism of octaarginine-modified alginate nanoparticles for improving intestinal insulin delivery. J Pharm Sci 2021;110:268–279. doi:10.1016/j.xphs.2020.07.004.
  • Kim KS, Kwag DS, Hwang HS, et al. Immense insulin intestinal uptake and lymphatic transport using bile acid conjugated partially uncapped liposome. Mol Pharm 2018;15:4756–4763. doi:10.1021/acs.molpharmaceut.8b00708.
  • Staquicini DI, Rangel R, Guzman-Rojas L, et al. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Sci Rep 2017;7:4243. doi:10.1038/s41598-017-03470-w.
  • Nazir I, Fürst A, Lupo N, et al. Zeta potential changing self-emulsifying drug delivery systems: a promising strategy to sequentially overcome mucus and epithelial barrier. Eur J Pharm Biopharm 2019;144:40–49. doi:10.1016/j.ejpb.2019.09.007.
  • Arai M, Komori H, Fujita D, et al. Uptake pathway of apple-derived nanoparticle by intestinal cells to deliver its cargo. Pharm Res 2021;38:523–530.
  • Petro-Sakuma C, Celino-Brady FT, Breves JP, et al. Growth hormone regulates intestinal gene expression of nutrient transporter in tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2020;292:113464. doi:10.1016/j.ygcen.2020.113464.
  • Kolonin MG, Saha PK, Chan L, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med 2004;10:625–632. doi:10.1038/nm1048.
  • Hossen MN, Kajimoto K, Akita H, et al. Therapeutic assessment of cytochrome C for the prevention of obesity through endothelial cell-targeted nanoparticulate system. Mol Ther 2013;21(3):533–541. doi:10.1038/mt.2012.256.
  • Xue Y, Xu X, Zhang X, et al. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci 2016;113(20):5552–5557. doi:10.1073/pnas.1603840113.
  • Soddu L, Trinh DN, Dunne E, et al. Identification of physicochemical properties that modulate nanoparticle aggregation in blood. Beilstein J Nanotechnol 2020;11:550–567. doi:10.3762/bjnano.11.44.
  • Mahmoudi M. Debugging nano-bio interfaces: systemic strategies to accelerate clinical translation of nanotechnologies. Trends Biotechnol 2018;36(8):755–769. doi:10.1016/j.tibtech.2018.02.014.
  • Fong WK, Moore TL, Balog S, et al. Chapter 5: nanoparticle behaviour in complex media: methods for characterizing physicochemical properties, evaluating protein corona formation, and implications for biological studies. In: P Gehr, R Zellner, editor. Biological responses to nanoscale particles – molecular and cellular aspects and methodological approaches. Switzerland: Springer Nature; 2019. p. 101–150.
  • Rothen-Rutishauser B, Bourquin J, Petri-Fink A. Chapter 6: membrane transfer, cellular uptake and intracellular fate: mechanisms and detection methods. In: P Gehr, R Zellner, editors. Biological responses to nanoscale particles – molecular and cellular aspects and methodological approaches. Switzerland: Springer Nature; 2019. p. 153–170.
  • Frey A, Ramaker K, Rockendorf N, et al. Chapter 12: fate and translocation of (nano)particulate matter in the gastrointestinal tract. In: P Gehr, R Zellner, editors. Biological responses to nanoscale particles – molecular and cellular aspects and methodological approaches. Switzerland: Springer Nature; 2019. p. 281–327.
  • Tsao C, Yuan Z, Zhang P, et al. Enhanced pulmonary systemic delivery of protein drugs via zwitterionic polymer conjugation. J Control Release. 2020;322:170–176. doi:10.1016/j.jconrel.2020.03.019.
  • Sofi HS, Abdal-hay A, Ivanovski S, et al. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: current status and future perspectives. Mat Sci Eng C. 2020;111:110756. doi:10.1016/j.msec.2020.110756.
  • Nawaz A, Wong TW. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate particles: microwave modulated uptake by skin and melanoma cells. J Investig Dermatol 2018;138:2412–2422. doi:10.1016/j.jid.2018.04.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.