898
Views
0
CrossRef citations to date
0
Altmetric
Full Critical Review

Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review

, , &
Pages 1245-1319 | Received 16 Nov 2022, Accepted 23 Jun 2023, Published online: 07 Nov 2023

References

  • Kim J-K, Mai Y-W. Characterization of interfaces. In: J-K Kim, Y-W Mai, editors. Engineered Interfaces in Fiber Reinforced Composites; 1998. tinyurl.com/2p9yra3a
  • Nath RB, Fenner DN, Galiotis C. Finite element modelling of interfacial failure in model carbon fibre-epoxy composites. J Mater Sci. 1996;31:2879–2883. doi:10.1007/BF00355996
  • Sethi S, Ray BC. Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability. Adv Colloid Interface Sci. 2015;217:43–67. doi:10.1016/j.cis.2014.12.005
  • Huang S, Fu Q, Yan L, et al. Characterization of interfacial properties between fibre and polymer matrix in composite materials – a critical review. J Mater Res Technol. 2021;13:1441–1484. doi:10.1016/j.jmrt.2021.05.076
  • Hughes JDH. The carbon fibre/epoxy interface—a review. Compos Sci Technol. 1991;41:13–45. doi:10.1016/0266-3538(91)90050-Y
  • McCarthy ED, Soutis C. Determination of interfacial shear strength in continuous fibre composites by multi-fibre fragmentation: a review. Composites Part A. 2019;118:281–292. doi:10.1016/j.compositesa.2019.01.001
  • Mamalis D, Murray JJ, McClements J, et al. Novel carbon-fibre powder-epoxy composites: interface phenomena and interlaminar fracture behaviour. Composites Part B. 2019;174:107012. doi:10.1016/j.compositesb.2019.107012
  • İnal O, Katnam KB, Potluri P, et al. Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils. Aeronaut J. 2022;126:222–248. doi:10.1017/aer.2021.95
  • Zeng L, Liu X, Chen X, et al. π - π interaction between carbon fibre and epoxy resin for interface improvement in composites. Composites Part B. 2021;220:108983. doi:10.1016/j.compositesb.2021.108983
  • Piggott MR. Why interface testing by single-fibre methods can be misleading. Compos Sci Technol. 1997;57:965–974. doi:10.1016/S0266-3538(97)00036-5
  • Martinez GM, Piggott MR, Bainbridge DMR, et al. The compression strength of composites with kinked, misaligned and poorly adhering fibres. J Mater Sci. 1981;16:2831–2836. doi:10.1007/BF02402847
  • Piggott MR, Xiong Y. Visualization of debonding of fully and partially embedded glass fibres in epoxy resins. Compos Sci Technol. 1994;52:535–540. doi:10.1016/0266-3538(94)90036-1
  • Sockalingam S, Nilakantan G. Fiber-matrix interface characterization through the microbond test. Int J Aeronaut Space Sci. 2012;13:282–295. doi:10.5139/IJASS.2012.13.3.282
  • ASTM D2344/D2344M-13: Standard test method for short-beam strength of polymer matrix composite materials and their laminates. ASTM International 2016; 15.03.
  • ISO 14130:1998: Fibre-reinforced plastic composites - determinations of apparent laminar shear strength by short-beam method. Geneva, Switzerland; 1998.
  • ASTM D7264/D7264M-07: Standard test method for flexural properties of polymer matrix composite materials. ASTM International 2015; 15.03.
  • ISO 14125:1998 Fibre-reinforced plastic composites -determination of flexural properties. 1998.
  • Camanho PP, Hallett SR. Numerical modelling of failure in advanced composite materials. A Volume in Woodhead Publishing Series in Composites Science and Engineering; 2015.
  • Guocheng Q, Shanyi D, Boming Z, Yalin Y. A new approach to assessing carbon fiber/epoxy interfacial shear strength by tensile test of 45° fiber bundle composites: Experiment, modeling and applicability. Compos Sci Technol. 2016;129:214–221. doi:10.1016/j.compscitech.2016.04.032
  • Guocheng Q, Boming Z, Shanyi D, Yalin Y Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure. Compos Struct. 2017;167:1–10. doi:10.1016/j.compstruct.2017.01.047
  • Pupurs A, Krasnikovs A, Varna J. Energy release rate based fiber/matrix debond growth in fatigue. Part II: debond growth analysis using Paris law. Mech Adv Mater Struct. 2013;20:288–296. doi:10.1080/15376494.2011.627628
  • Kohler S, Cugnoni J, Amacher R, et al. Transverse cracking in the bulk and at the free edge of thin-ply composites: experiments and multiscale modelling. Composites Part A. 2019;124:105468. doi:10.1016/j.compositesa.2019.05.036
  • Herráez M, Mora D, Naya F, et al. Transverse cracking of cross-ply laminates: a computational micromechanics perspective. Compos Sci Technol. 2015;110:196–204. doi:10.1016/j.compscitech.2015.02.008
  • Sørensen BF, Lilholt H. Fiber pull-out test and single fiber fragmentation test - analysis and modelling. In: IOP conference Series: Materials Science and Engineering, 37th Risø International Symposium on Materials Science. 2016; Vol. 012009. doi:10.1088/1757-899X/139/1/012009
  • Pitkethly MJ, Favre JP, Gaur U, et al. A round-robin programme on interfacial test methods. Compos Sci Technol. 1993;48:205–214. doi:10.1016/0266-3538(93)90138-7
  • Inkson BJ. 2 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In: G Hübschen, I Altpeter, R Tschuncky, H-G Herrmann, editors. Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing; 2016, 17–43, The University of Sheffield, Sheffield, United Kingdom. doi:10.1016/B978-0-08-100040-3.00002-X.
  • Ismail Y, Sheng Y, Yang D, et al. Discrete element modelling of unidirectional fibre-reinforced polymers under transverse tension. Composites Part B. 2015;73:118–125. doi:10.1016/j.compositesb.2014.12.024
  • París F, Correa E, Canas J. Micromechanical view of failure of the matrix in fibrous composite materials. Compos Sci Technol. 2003;63:1041–1052. doi:10.1016/S0266-3538(03)00017-4
  • Xiong QL, Meguid SA. Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur Polym J. 2015;69:1–15. doi:10.1016/j.eurpolymj.2015.05.006
  • Xiao Y, Xian G. Effects of moisture ingress on the bond between carbon fiber and epoxy resin investigated with molecular dynamics simulation. Polym Compos. 2018;39:E2074–E2083.
  • Tam L, He L, Wu C. Molecular dynamics study on the effect of salt environment on interfacial structure, stress, and adhesion of carbon fiber/epoxy interface. Compos Interfaces. 2019;26:431–447. doi:10.1080/09276440.2018.1506901
  • Zheng H, Zhang W, Li B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review. Composites Part B. 2022;233:109639. doi:10.1016/j.compositesb.2022.109639
  • Johnson AC, Hayes SA, Jones FR. The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test. Composites Part A. 2012;43:65–72. doi:10.1016/j.compositesa.2011.09.005
  • Nath RB, Fenner DN, Galiotis C. Elasto-plastic finite element modelling of interfacial failure in model Kevlar 49 fibre—epoxy composites. Composites Part A. 1996;27:821–832. doi:10.1016/1359-835X(96)00053-X
  • Nath RB, Fenner DN, Galiotis C. The progressional approach to interfacial failure in carbon reinforced composites: elasto-plastic finite element modelling of interface cracks. Composites Part A. 2000;31:929–943. doi:10.1016/S1359-835X(00)00047-6
  • Guild FJ, Vlattas C, Galiotis C. Modelling of stress transfer in fibre composites. Compos Sci Technol. 1994;50:319–332. doi:10.1016/0266-3538(94)90020-5
  • Mullin JV, Mazzio VF, Mehan RL. Basic failure mechanisms in advanced composites, NASw-2093. NASA. Philadelphia, PA: General Electric Co.; 1971.
  • Feih S, Wonsyld K, Minzari D, et al. Testing procedure for the single fiber fragmentation test. Denmark: Risø National Laboratory. Forskningscenter Risoe. Risoe-R No. 1483(EN); 2004.
  • Paipetis A, Galiotis C. Effect of fibre sizing on the stress transfer efficiency in carbon/epoxy model composites. Composites Part A. 1996;27:755–767. doi:10.1016/1359-835X(96)00054-1
  • Ten Busschen A, Selvadurai APS. Mechanics of the segmentation of an embedded fiber, part I: experimental investigations. J Appl Mech. 1995;62:87–97. doi:10.1115/1.2895888
  • Thomason JL. Glass fibre sizing: a review. Composites Part A. 2019;127:105619. doi:10.1016/j.compositesa.2019.105619
  • Huang Y, Young RJ. Analysis of the fragmentation test for carbon-fibre/epoxy model composites by means of Raman spectroscopy. Compos Sci Technol. 1994;52:505–517. doi:10.1016/0266-3538(94)90033-7
  • Tuinstra F, Koenig JL. Characterization of graphite fiber surfaces with Raman spectroscopy. J Compos Mater. 1970;4:492–499. doi:10.1177/002199837000400405
  • Liu F, Wang D, Liu J, et al. Reviews on interfacial properties of the carbon fiber reinforced polymer composites. J Phys: Conf Ser. 2020;1637:012027. doi:10.1088/1742-6596/1637/1/012027
  • Lacroix T, Keunings R, Desaeger M, et al. A new data reduction scheme for the fragmentation testing of polymer composites. J Mater Sci. 1995;30:683–692. doi:10.1007/BF00356328
  • Desaeger M, Reis MJ, Botelho Do Rego AM, et al. Surface characterization of poly(acrylonitrile) based intermediate modulus carbon fibres. J Mater Sci. 1996;31:6305–6315. doi:10.1007/BF00354454
  • Thomason JL, Adzima LJ. Sizing up the interphase: an insider’s guide to the science of sizing. Composites Part A. 2001;32:313–321. doi:10.1016/S1359-835X(00)00124-X
  • Yuan H, Zhang S, Lu C, et al. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing. Appl Surf Sci. 2013;279:279–284. doi:10.1016/j.apsusc.2013.04.085
  • Yue ZR, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers. Carbon. 1999;37:1785–1796. doi:10.1016/S0008-6223(99)00047-0
  • Severini F, Formaro L, Pegoraro M, et al. Chemical modification of carbon fiber surfaces. Carbon. 2002;40:735–741. doi:10.1016/S0008-6223(01)00180-4
  • Chen X, Farber M, Gao Y, et al. Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon. 2003;41:1489–1500. doi:10.1016/S0008-6223(03)00053-8
  • Xing L, Liu L, Xie F, et al. Mutual irradiation grafting on indigenous aramid fiber-3 in diethanolamine and epichlorohydrin and its effect on interfacially reinforced epoxy composite. Appl Surf Sci. 2016;375:65–73. doi:10.1016/j.apsusc.2016.03.073
  • Liu L, Huang YD, Zhang ZQ, et al. Ultrasonic modification of aramid fiber-epoxy interface. J Appl Polym Sci. 2001;81:2764–2768. doi:10.1002/app.1722
  • Zheng L, Wang Y, Qin J, et al. Scalable manufacturing of carbon nanotubes on continuous carbon fibers surface from chemical vapor deposition. Vacuum. 2018;152:84–90. doi:10.1016/j.vacuum.2018.03.011
  • Boccaccini AR, Cho J, Roether JA, et al. Electrophoretic deposition of carbon nanotubes. Carbon. 2006;44:3149–3160. doi:10.1016/j.carbon.2006.06.021
  • Zhao M, Meng L, Ma L, et al. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol. 2018;154:28–36. doi:10.1016/j.compscitech.2017.11.002
  • Montes-Morán MA, Van Hattum FWJ, Nunes JP, et al. A study of the effect of plasma treatment on the interfacial properties of carbon fibre-thermoplastic composites. Carbon. 2005;43:1795–1799. doi:10.1016/j.carbon.2005.02.005
  • Drzal LT, Rich MJ, Lloyd PF. Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment. J Adhes. 1983;16:1–30. doi:10.1080/00218468308074901
  • Schadler LS, Laird C, Figueroa JC. Interphase behaviour in graphite-thermoplastic monofilament composites - part I monotonic behaviour. J Mater Sci. 1992;27:4024–4034. doi:10.1007/BF01105100
  • Drzal LT, Rich MJ, Koenig MF, et al. Adhesion of graphite fibers to epoxy matrices: II. The effect of fiber finish. J Adhes. 1983;16:133–152. doi:10.1080/00218468308074911
  • Lv P, Feng YY, Zhang P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon. 2011;49:4665–4673. doi:10.1016/j.carbon.2011.06.064
  • Zhang J, Bai JB, Wagner HD, et al. Interfacial studies of carbon fiber/epoxy composites using single fiber fragmentation test. In the Proceedings of the 15th European Conference on Composite Materials; Venice, Italy; 2012.
  • Qian H, Bismarck A, Greenhalgh ES, et al. Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem Mater. 2008;20:1862–1869. doi:10.1021/cm702782j
  • Liu Q, Lomov S V, Gorbatikh L. When does nanotube grafting on fibers benefit the strength and toughness of composites? Compos Sci Technol. 2020;188:107989. doi:10.1016/j.compscitech.2020.107989
  • Godara A, Gorbatikh L, Kalinka G, et al. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos Sci Technol. 2010;70:1346–1352. doi:10.1016/j.compscitech.2010.04.010
  • Warrier A, Godara A, Rochez O, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A. 2010;41:532–538. doi:10.1016/j.compositesa.2010.01.001
  • Terrones M, Martín O, González M, et al. Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater. 2011;23:5302–5310. doi:10.1002/adma.201102036
  • Gnanasekar P, Chen H, Tratnik N, et al. Enhancing performance of phosphorus containing vanillin-based epoxy resins by P–N non-covalently functionalized graphene oxide nanofillers. Composites Part B. 2021;207:108585. doi:10.1016/j.compositesb.2020.108585
  • Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited. J Phys Chem B. 1998;102:4477–4482. doi:10.1021/jp9731821
  • Hussain S, Yorucu C, Ahmed I, et al. Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites. Surf Coatings Technol. 2014;258:458–466. doi:10.1016/j.surfcoat.2014.08.054
  • Thomason JL, Nagel U, Yang L, et al. A study of the thermal degradation of glass fibre sizings at composite processing temperatures. Composites Part A. 2019;121:56–63. doi:10.1016/j.compositesa.2019.03.013
  • Ivens J, Wevers M, Verpoest I. Influence of carbon fibre surface treatment on composite UD strength. Composites. 1994;25:722–728. doi:10.1016/0010-4361(94)90207-0
  • Hoecker F, Karger-Kocsis J. Effects of the interface on the mechanical response of CF/EP microcomposites and macrocomposites. Composites. 1994;25:729–738. doi:10.1016/0010-4361(94)90208-9
  • Tripathi D, Jones FR. Single fibre fragmentation test for assessing adhesion in fibre reinforced composites. J Mater Sci. 1998;33:1–16. doi:10.1023/A:1004351606897
  • ElKhoury L, Berg JC. The effect of curing schedules on fiber-matrix adhesion in carbon fiber-epoxy resin composites. J Compos Mater. 2022;56:699–712. doi:10.1177/00219983211060467
  • Campana C, Leger R, Sonnier R, et al. Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Composites Part A. 2018;107:171–179. doi:10.1016/j.compositesa.2017.12.029
  • Haider M, Hubert P, Lessard L. Cure shrinkage characterization and modeling of a polyester resin containing low profile additives. Composites Part A. 2007;38:994–1009. doi:10.1016/j.compositesa.2006.06.020
  • Li W, Lee LJ. Shrinkage control of low-profile unsaturated polyester resins cured at low temperature. Polymer. 1998;39:5677–5687. doi:10.1016/S0032-3861(98)00074-3
  • Wang H, Yang W, Yu H, et al. Assessment of residual stresses during cure and cooling of epoxy resins. Polym Eng Sci. 1995;35:1895–1898. doi:10.1002/pen.760352309
  • Wang X, Xu D, Liu HY, et al. Effects of thermal residual stress on interfacial properties of polyphenylene sulphide/carbon fibre (PPS/CF) composite by microbond test. J Mater Sci. 2016;51:334–343. doi:10.1007/s10853-015-9251-2
  • Cottrell AH. Strong solids. Proc R Soc A. 1964;282:2–9.
  • Kelly A, Tyson WR. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids. 1965;13:329–338. doi:10.1016/0022-5096(65)90035-9
  • Gao YC, Mai YW, Cotterell B. Fracture of fiber-reinforced materials. J Appl Math Phys. 1988;39:550–572.
  • Hutchinson JW, Jensen HM. Models of fiber debonding and pullout in brittle composites with friction. Mech Mater. 1990;9:139–163. doi:10.1016/0167-6636(90)90037-G
  • Graciani E, Mantič V, París F, et al. Numerical analysis of debond propagation in the single fibre fragmentation test. Compos Sci Technol. 2009;69:2514–2520. doi:10.1016/j.compscitech.2009.07.006
  • Kim BW, Nairn JA. Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites. J Compos Mater. 2002;36:1825–1858. doi:10.1177/0021998302036015243
  • Wood JR, Wagner HD, Marom G. The compressive fragmentation phenomenon: using microcomposites to evaluate thermal stresses, single fibre compressive strengths, Weibull parameters and interfacial shear strengths. Proc R Soc London Ser A. 1996;452:235–252. doi:10.1098/rspa.1996.0014
  • Verpoest I, Desaeger M, Keunings R. Critical review of direct micromechanical test methods for interfacial strength measurements in composites. In: Proceedings of the 3rd International Conference on Composite Interfaces (ICCI-III); Cleveland, Ohio, USA; 1990.
  • Netravali AN, Li ZF, Sachse W, et al. Determination of fibre/matrix interfacial shear strength by an acoustic emission technique. J Mater Sci. 1991;26:6631–6638. doi:10.1007/BF02402656
  • Netravali AN, Topoleski LTT, Sachse WH, et al. An acoustic emission technique for measuring fiber fragment length distributions in the single-fiber- composite test. Compos Sci Technol. 1989;35:13–29. doi:10.1016/0266-3538(89)90068-7
  • Yilmaz YI. Analyzing single fiber fragmentation test data by using stress transfer model. J Compos Mater. 2002;36:537–551. doi:10.1177/0021998302036005465
  • Lodeiro MJ. Single-fibre fragmentation test for the characterisation of interfacial phenomena in PMCs. 2001; NPL Report. MATC(MN)0. http://eprintspublications.npl.co.uk/id/eprint/3252
  • Khan RA, Parsons AJ, Jones IA, et al. Interfacial properties of phosphate glass fiber/poly(caprolactone)system measured using the single fiber fragmentation test. Compos Interfaces. 2011;18:77–90. doi:10.1163/092764410X554058
  • Ohsawa T, Nakayama A, Miwa M, et al. Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins. J Appl Polym Sci. 1978;22:3203–3212. doi:10.1002/app.1978.070221115
  • Feillard P, Désarmot G, Favre JP. Theoretical aspects of the fragmentation test. Compos Sci Technol. 1994;50:265–279. doi:10.1016/0266-3538(94)90148-1
  • Figueroa JC, Carney TE, Schadler LS, et al. Micromechanics of single filament composites. Compos Sci Technol. 1991;42:77–101. doi:10.1016/0266-3538(91)90013-F
  • Drzal LT, Rich MJ, Camping JD, et al. Interfacial shear strength and failure mechanisms in graphite fiber composites. In Proceedings of the 35th Annual Technical Conference Reinforced Plastics/Composites Institute, The Society of the Plastics Industry, Inc.; New Orleans, USA; 1980.
  • Tripathi D, Chen F, Jones FR. The effect of matrix yield strain on the data reduction technique of the single-filament fragmentation test. Composites Part A. 1996;27:709–715. doi:10.1016/1359-835X(96)00041-3
  • Tripathi D, Turton T, Chen F, et al. A new method to normalize the effect of matrix properties on the value of interfacial shear strength obtained from the fragmentation test. J Mater Sci. 1997;32:4759–4765. doi:10.1023/A:1018631030753
  • Lodeiro MJ, Maudgal S, McCartney LN, et al. Project CPD3 - report 1 interface characterisation and behaviour: critical review of interface testing methods for composites. Teddington, Middlesex: National Physical Laboratory; 1998.
  • Rich MJ, Drzal LT, Hunston D, et al. Round Robin Assessment of the single fiber fragmentation test. In Proceedings of the American Society for Composites 17th Technical Conference; Purdue University, West Lafayette, Indiana; 2002.
  • Galiotis C. A study of mechanisms of stress transfer in continuous- and discontinuous-fibre model composites by laser Raman spectroscopy. Compos Sci Technol. 1993;48:15–28. doi:10.1016/0266-3538(93)90116-X
  • Nishikawa M, Okabe T, Takeda N, et al. Micromechanics of the fragmentation process in single-fiber composites. Modell Simul Mater Sci Eng. 2008;16:1–19. doi:10.1088/0965-0393/16/5/055009
  • van der Meer FP, Raijmaekers S, Rocha IBCM. Interpreting the single fiber fragmentation test with numerical simulations. Composites Part A. 2019;118:259–266. doi:10.1016/j.compositesa.2019.01.002
  • Bowyer WH, Bader MG. On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres. J Mater Sci. 1972;7:1315–1321. doi:10.1007/BF00550698
  • Bader MG, Bowyer WH. An improved method of production for high strength fibre-reinforced thermoplastics. Composites. 1973;4:150–156. doi:10.1016/0010-4361(73)90105-5
  • Aliotta L, Lazzeri A. A proposal to modify the Kelly-Tyson equation to calculate the interfacial shear strength (IFSS) of composites with low aspect ratio fibers. Compos Sci Technol. 2020;186:107920. doi:10.1016/j.compscitech.2019.107920
  • Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys. 1952;3:72–79. doi:10.1088/0508-3443/3/3/302
  • Lacroix T, Tiimans B, Keunings R, et al. Modelling of critical fibre length and interfacial debonding in the fragmentation testing of polymer composites. Compos Sci Technol. 1992;43:379–387. doi:10.1016/0266-3538(92)90061-7
  • Mendels DA. Analysis of the single-fibre fragmentation test, NPL report MATC(A)17. Teddington, Middlesex: National Physical Laboratory; 2001.
  • Nairn JA. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech Mater. 1997;26:63–80. doi:10.1016/S0167-6636(97)00023-9
  • Nayfeh AH. Thermomechanically induced interfacial stresses in fibrous composites. Fibre Sci Technol. 1977;10:195–209. doi:10.1016/0015-0568(77)90020-3
  • McCartney L. Analytical models of stress transfer in unidirectional composites and cross-ply laminates and their applications to the prediction of matrix/transverse cracking, local mechanics concepts for composite material systems. In the Proceedings of the IUTAM Symposia (International Union of Theoretical and Applied Mechanics); 1992.
  • Nairn JA. Generalized shear-lag analysis including imperfect interfaces. Adv Compos Lett. 2004;13:263–274. doi:10.1177/096369350401300601
  • Camanho PP, Hallett SR, editors. Numerical modelling of failure in advanced composite materials. Cambridge: Elsevier; Woodhead Publishing; 2015.
  • Landis CM, McGlockton MA, McMeeking RM. An improved shear lag model for broken fibers in composite materials. J Compos Mater. 1999;33:667–680. doi:10.1177/002199839903300704
  • Okabe T, Takeda N. Elastoplastic shear-lag analysis of single-fiber composites and strength prediction of unidirectional multi-fiber composites. Composites Part A. 2002;33:1327–1335. doi:10.1016/S1359-835X(02)00170-7
  • Landis CM, McMeeking RM. A shear-lag model for a broken fiber embedded in a composite with a ductile matrix. Compos Sci Technol. 1999;59:447–457. doi:10.1016/S0266-3538(98)00091-8
  • Balacó De Morais A. Stress distribution along broken fibres in polymer-matrix composites. Compos Sci Technol. 2001;61:1571–1580. doi:10.1016/S0266-3538(01)00058-6
  • Okabe T, Takeda N, Kamoshida Y, et al. A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites. Compos Sci Technol. 2001;61:1773–1787. doi:10.1016/S0266-3538(01)00079-3
  • Yang Z, Zhang BM, Zhao L, et al. Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping. Sci China Phys Mech Astron. 2011;54:296–302. doi:10.1007/s11433-010-4148-1
  • Landis CM, Beyerlein IJ, McMeeking RM. Micromechanical simulation of the failure of fiber reinforced composites. J Mech Phys Solids. 2000;48:621–648. doi:10.1016/S0022-5096(99)00051-4
  • Beyerlein IJ, Leigh Phoenix S. Statistics of fracture for an elastic notched composite lamina containing Weibull fibers— part I. Features from Monte-Carlo simulation. Eng Fract Mech. 1997;57:241–265. doi:10.1016/S0013-7944(97)00012-X
  • Drzal LT. The effect of polymeric matrix mechanical properties on the fiber-matrix interfacial shear strength. Mater Sci Eng A. 1990;126:289–293. doi:10.1016/0921-5093(90)90135-P
  • Okabe T, Takeda N. Estimation of strength distribution for a fiber embedded in a single-fiber composite: experiments and statistical simulation based on the elasto-plastic shear-lag approach. Compos Sci Technol. 2001;61:1789–1800. doi:10.1016/S0266-3538(01)00080-X
  • Zhao FM, Okabe T, Takeda N. Effect of matrix yield properties on fragmentation behavior of single fiber composites. Compos Interfaces. 2002;9:289–308. doi:10.1163/156855402320257366
  • Whitney JM, Drzal LT. Axisymmetric stress distribution around an isolated fiber fragment. Toughened composites. ASTM STP 937. American Society for Testing and Materials 1987; p. 179–96.
  • Nairn JA. A variational mechanics analysis of the stresses around breaks in embedded fibers. Mech Mater. 1992;13:131–154. doi:10.1016/0167-6636(92)90042-C
  • Wu W, Desaeger M, Verpoest I, et al. An improved analysis of the stresses in a single-fibre fragmentation test: I. Two-phase model. Compos Sci Technol. 1997;57:809–819. doi:10.1016/S0266-3538(97)00050-X
  • Tripathi D, Chen F, Jones FR. A comprehensive model to predict the stress fields in a single fibre composite. J Compos Mater. 1996;30:1514–1538. doi:10.1177/002199839603001401
  • Piggott MR. Failure processes in the fibre-polymer interphase. Compos Sci Technol. 1991;42:57–76. doi:10.1016/0266-3538(91)90012-E
  • Yallee RB, Young RJ. Evaluation of interface fracture energy for single-fibre composites. Compos Sci Technol. 1998;58:1907–1916. doi:10.1016/S0266-3538(98)00008-6
  • Nardone VC, Prewo KM. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall. 1986;20:43–48. doi:10.1016/0036-9748(86)90210-3
  • Ji S, Zhao P. Location of tensile fracture within rigid-brittle inclusions in a ductile flowing matrix. Tectonophysics. 1993;220:23–31. doi:10.1016/0040-1951(93)90221-5
  • Chen Z, Yan W. A shear-lag model with a cohesive fibre–matrix interface for analysis of fibre pull-out. Mech Mater. 2015;91:119–135. doi:10.1016/j.mechmat.2015.07.007
  • Xiong X, Shen SZ, Hua L, et al. Predicting tensile behaviors of short flax fiber-reinforced polymer–matrix composites using a modified shear-lag model. J Compos Mater. 2018;52:3701–3713. doi:10.1177/0021998318769128
  • Tucker N, Lindsey K. An introduction to automotive composites. Shawbury : Rapra Technology Ltd; 2002.
  • Nairn JA, Liu YC. On the use of energy methods for interpretation of results of single-fiber fragmentation experiments. Compos Interfaces. 1996;4:241–261. doi:10.1163/156855497X00028
  • Detassis M, Frydman E, Vrieling D, et al. Interface toughness in fibre composites by the fragmentation test. Composites Part A. 1996;27:769–773. doi:10.1016/1359-835X(96)00045-0
  • Zhou X, Nairn JA, Wagner HD. Fiber-matrix adhesion from the single-fiber composite test: nucleation of interfacial debonding. Composites Part A. 1999;30:1387–1400. doi:10.1016/S1359-835X(99)00043-3
  • Zhuang L, Pupurs A, Varna J, et al. Fiber/matrix debond growth from fiber break in unidirectional composite with local hexagonal fiber clustering. Composites Part B. 2016;101:124–131. doi:10.1016/j.compositesb.2016.07.005
  • Pupurs A, Varna J. Energy release rate based fiber/matrix debond growth in fatigue. Part I: self-similar crack growth. Mech Adv Mater Struct. 2013;20:276–287. doi:10.1080/15376494.2011.627627
  • Wagner HD, Nairn JA, Detassis M. Toughness of interfaces from initial fiber-matrix debonding in a single fiber composite fragmentation test. Appl Compos Mater. 1995;2:107–117. doi:10.1007/BF00569253
  • Graciani E, Varna J, Manti V, et al. Evaluation of interfacial fracture toughness and friction coefficient in the single fiber fragmentation test. Procedia Eng. 2011;10:2478–2483. doi:10.1016/j.proeng.2011.04.408
  • Kim BW, Nairn JA. Experimental verification of the effects of friction and residual stress on the analysis of interfacial debonding and toughness in single fiber composites. J Mater Sci. 2002;37:3965–3972. doi:10.1023/A:1019684312272
  • Nairn JA. Fracture mechanics of composites with residual stresses, traction-loaded cracks, and imperfect interfaces. Int J Fract. 2000;105:243–271. doi:10.1023/A:1007666426275
  • Sørensen BF. Micromechanical model of the single fiber fragmentation test. Mech Mater. 2017;104:38–48. doi:10.1016/j.mechmat.2016.10.002
  • Budiansky B, Hutchinson JW, Evans AG. Matrix fracture in fiber-reinforced ceramics. J Mech Phys Solids. 1986;34:167–189. doi:10.1016/0022-5096(86)90035-9
  • Sørensen BF, Lilholt H. Fiber pull-out test and single fiber fragmentation test - analysis and modelling. In: IOP Conference Series: Materials Science and Engineering, 37th Risø International Symposium on Materials Science 2016; Vol. 139.
  • Budiman BA, Takahashi K, Inaba K, et al. A new method of evaluating interfacial properties of a fiber/matrix composite. J Compos Mater. 2015;49:465–475. doi:10.1177/0021998314521061
  • Turon A, Dávila CG, Camanho PP, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech. 2007;74:1665–1682. doi:10.1016/j.engfracmech.2006.08.025
  • Alfano G, Crisfield MA. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng. 2001;50:1701–1736. doi:10.1002/nme.93
  • Harper PW, Hallett SR. Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech. 2008;75:4774–4792. doi:10.1016/j.engfracmech.2008.06.004
  • Ghosh G, Duddu R, Annavarapu C. A stabilized finite element method for delamination analysis of composites using cohesive elements. ArXiv:200809015v1; 2020.
  • Daudeville L, Allix O, Ladevèze P. Delamination analysis by damage mechanics: some applications. Compos Eng. 1995;5:17–24. doi:10.1016/0961-9526(95)93976-3
  • Zou Z, Reid SR, Li S, et al. Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation. J Compos Mater. 2002;36:477–499. doi:10.1177/0021998302036004539
  • Camanho PP, Davila C, Moura M. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater. 2003;37:1415–1438. doi:10.1177/0021998303034505
  • Yuan H, Li X. Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models. Eng Fract Mech. 2014;126:1–11. doi:10.1016/j.engfracmech.2014.04.019
  • Zhao L, Gong Y, Zhang J, et al. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos Struct. 2014;116:509–522. doi:10.1016/j.compstruct.2014.05.042
  • Turon A, Camanho PP, Costa J, et al. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct. 2010;92:1857–1864. doi:10.1016/j.compstruct.2010.01.012
  • Turon A, González EV, Sarrado C, et al. Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness. Compos Struct. 2018;184:506–511. doi:10.1016/j.compstruct.2017.10.017
  • Dávila CG, Rose CA, Camanho PP. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int J Fract. 2009;158:211–223. doi:10.1007/s10704-009-9366-z
  • Budiman BA, Takahashi K, Inaba K, et al. Evaluation of interfacial strength between fiber and matrix based on cohesive zone modeling. Composites Part A. 2016;90:211–217. doi:10.1016/j.compositesa.2016.06.024
  • Ramirez FA, Carlsson LA, Acha BA. A method to measure fracture toughness of the fiber/matrix interface using the single-fiber fragmentation test. Composites Part A. 2009;40:679–686. doi:10.1016/j.compositesa.2009.04.011
  • Varna J, Joffe R, Berglund LA. Interfacial toughness evaluation from the single-fiber fragmentation test. Compos Sci Technol. 1996;56:1105–1109. doi:10.1016/0266-3538(96)00096-6
  • Swolfs Y. Hybridisation of self-reinforced composites: modelling and verifying a novel hybrid concept. [PhD thesis]. KU Leuven, 2015.
  • Xia Z, Curtin WA, Okabe T. Green’s function vs. shear-lag models of damage and failure in fiber composites. Compos Sci Technol. 2002;62:1279–1288. doi:10.1016/S0266-3538(02)00073-8
  • Xia Z, Okabe T, Curtin WA. Shear-lag versus finite element models for stress transfer in fiber-reinforced composites. Compos Sci Technol. 2002;62:1141–1149. doi:10.1016/S0266-3538(02)00072-6
  • Babaei R, Farrokhabadi A. Prediction of debonding growth in two-dimensional RVEs using an extended interface element based on continuum damage mechanics concept. Compos Struct. 2020;238:111981. doi:10.1016/j.compstruct.2020.111981
  • Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique. 1979;29:47–65. doi:10.1680/geot.1979.29.1.47
  • Le BD, Dau F, Charles JL, et al. Modeling damages and cracks growth in composite with a 3D discrete element method. Composites Part B. 2016;91:615–630. doi:10.1016/j.compositesb.2016.01.021
  • Sheng Y, Yang D, Tan Y, et al. Microstructure effects on transverse cracking in composite laminae by DEM. Compos Sci Technol. 2010;70:2093–2101. doi:10.1016/j.compscitech.2010.08.006
  • Yang D, Sheng Y, Ye J, et al. Discrete element modeling of the microbond test of fiber reinforced composite. Comput Mater Sci. 2010;49:253–259. doi:10.1016/j.commatsci.2010.05.003
  • Le BD, Dau F, Pham DH, et al. Discrete element modeling of interface debonding behavior in composite material: application to a fragmentation test. Compos Struct. 2021;272:114170. doi:10.1016/j.compstruct.2021.114170
  • Ahmadvashaghbash S, Breite C, Mehdikhani M, et al. Longitudinal debonding in unidirectional fibre-reinforced composites: numerical analysis of the effect of interfacial properties. Compos Sci Technol. 2021;218:109117. doi:10.1016/j.compscitech.2021.109117
  • AhmadvashAghbash S, Fazlali B, Mehdikhani M, et al. Finite element analysis of the effect of longitudinal debonding on stress redistributions around fibre breaks in randomly packed fibres. Compos Sci Technol. 2022;227:109586. doi:10.1016/j.compscitech.2022.109586
  • Galiotis C, Batchelder DN. Strain dependences of the first- and second-order Raman spectra of carbon fibres. J Mater Sci Lett. 1988;7:545–547. doi:10.1007/BF01730722
  • Robinson IM, Zakikhani M, Day RJ, et al. Strain dependence of the Raman frequencies for different types of carbon fibres. J Mater Sci Lett. 1987;6:1212–1214. doi:10.1007/BF01729187
  • Schadler LS, Galiotis C. Fundamentals and applications of micro Raman spectroscopy to strain measurements in fibre reinforced composites. Int Mater Rev. 1995;40:116–134. doi:10.1179/imr.1995.40.3.116
  • Galiotis C, Read RT, Yeung PHJ, et al. High-modulus polydiacetylene single-crystal fibers. J Polym Sci Part A-2, Polym Phys. 1984;22:1589–1606. doi:10.1002/pol.1984.180220903
  • Galiotis C, Young RJ, Batchelder DN. The solid-state polymerization and physical properties of bis(ethyl urethane) of 2,4-hexadiyne-1,6-diol. II. Resonance Raman spectroscopy. J Polym Sci Part A-2, Polym Phys. 1983;21:2483–2494. doi:10.1002/pol.1983.180211206
  • Galiotis C. Interfacial studies on model composites by laser Raman spectroscopy. Compos Sci Technol. 1991;42:125–150. doi:10.1016/0266-3538(91)90015-H
  • Jahankhani H, Galiotis C. Interfacial shear stress distribution in model composites, part 1: a Kevlar 49® fibre in an epoxy matrix. J Compos Mater. 1991;25:609–631. doi:10.1177/002199839102500508
  • Melanitis N, Galiotis C. Interfacial micromechanics in model composites using laser Raman spectroscopy. Proc R Soc London Ser A. 1993;440:379–398.
  • Galiotis C, Paipetis A, Mansion C. Unification of fibre/matrix interfacial measurements with Raman microscopy. J Raman Spectrosc. 1999;30:899–912. doi:10.1002/(SICI)1097-4555(199910)30:10<899:AID-JRS465>3.0.CO;2-V
  • Wagner HD. Interface mechanics in fiber composites: a short tutorial (FiBreMoD School Lectures, Day 1, Lecture 1-KU Leuven, Belgium). 2019.
  • van den Heuvel PWJ, Peijs T, Young RJ. Failure phenomena in two-dimensional multifibre microcomposites: 2. A Raman spectroscopic study of the influence of inter-fibre spacing on stress concentrations. Compos Sci Technol. 1997;57:899–911. doi:10.1016/S0266-3538(97)00004-3
  • Montes-Morán MA, Young RJ. Raman spectroscopy study of high-modulus carbon fibres: effect of plasma-treatment on the interfacial properties of single-fibre-epoxy composites. Part II - characterisation of the fibre–matrix interface. Carbon. 2002;40:857–875. doi:10.1016/S0008-6223(01)00207-X
  • Zhu M, Wang Y, Wang C, et al. An improved analytical model for inversely determining multiple interfacial parameters from single fiber micro-Raman and fragmentation tests. Compos Sci Technol. 2021;214:108983. doi:10.1016/j.compscitech.2021.108983
  • Li ZF, Grubb DT, Phoenix SL. Fiber interactions in the multi-fiber composite fragmentation test. Compos Sci Technol. 1995;54:251–266. doi:10.1016/0266-3538(95)00056-9
  • Yamamoto G, Onodera M, Koizumi K, et al. Considering the stress concentration of fiber surfaces in the prediction of the tensile strength of unidirectional carbon fiber-reinforced plastic composites. Composites Part A. 2019;121:499–509. doi:10.1016/j.compositesa.2019.04.011
  • Wagner HD, Amer MS, Schadler LS. Fibre interactions in two-dimensional composites by micro-Raman spectroscopy. J Mater Sci. 1996;31:1165–1173. doi:10.1007/BF00353095
  • Schadler LS, Amer MS, Iskandarani B. Experimental measurement of fiber/fiber interaction using micro Raman spectroscopy. Mech Mater. 1996;23:205–216. doi:10.1016/0167-6636(96)00004-X
  • Paipetis A, Galiotis C, Liu YC, et al. Stress transfer from the matrix to the fibre in a fragmentation test: Raman experiments and analytical modeling. J Compos Mater. 1999;33:377–399. doi:10.1177/002199839903300404
  • Piggott MR. Expressions governing stress-strain curves in short fibre reinforced polymers. J Mater Sci. 1978;13:1709–1716. doi:10.1007/BF00548734
  • Grubb DT, Li ZF, Phoenix SL. Measurement of stress concentration in a fiber adjacent to a fiber break in a model composite. Compos Sci Technol. 1995;54:237–249. doi:10.1016/0266-3538(95)00055-0
  • Wagner HD, Steenbakkers LW. Microdamage analysis of fibrous composite monolayers under tensile stress. J Mater Sci. 1989;24:3956–3975. doi:10.1007/BF01168959
  • Jones KD, DiBenedetto AT. Fiber fracture in hybrid composite systems. Compos Sci Technol. 1994;51:53–62. doi:10.1016/0266-3538(94)90156-2
  • Mccarthy ED, Kim JH, Heckert NA, et al. The fiber break evolution process in a 2-D epoxy/glass multi-fiber array. Compos Sci Technol. 2015;121:73–81. doi:10.1016/j.compscitech.2014.10.013
  • Kim JH, Hettenhouser JW, Moon CK, et al. A fiber placement device and methodology for preparing 2-D and 3-D combinatorial microcomposites. J Mater Sci. 2009;44:3626–3632. doi:10.1007/s10853-009-3362-6
  • Goutianos S, Peijs T, Galiotis C. Mechanisms of stress transfer and interface integrity in carbon/epoxy composites under compression loading part I: experimental investigation. Int J Solids Struct. 2002;39:3217–3231. doi:10.1016/S0020-7683(02)00240-8
  • Goutianos S, Peijs T. Experimental and numerical investigation into fatigue damage mechanisms in multif ibre microcomposites. Plast Rubber Compos Process Appl. 2001;30:222–232.
  • Pupurs A, Varna J. Fracture mechanics analysis of debond growth in a single-fiber composite under cyclic loading. Mech Compos Mater. 2011;47:109–124. doi:10.1007/s11029-011-9190-1
  • Littell J, Ruggeri C, Goldberg R, et al. Measurement of epoxy resin tension, compression, and shear stress–strain curves over a wide range of strain rates using small test specimens. J Aerosp Eng. 2008;21:162–173. doi:10.1061/(ASCE)0893-1321(2008)21:3(162)
  • Fiedler B, Hojo M, Ochiai S, et al. Failure behavior of an epoxy matrix under different kinds of static loading. Compos Sci Technol. 2001;61:1615–1624. doi:10.1016/S0266-3538(01)00057-4
  • Hsieh TH, Kinloch AJ, Masania K, et al. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer. 2010;51:6284–6294. doi:10.1016/j.polymer.2010.10.048
  • Morelle XP, Chevalier J, Bailly C, et al. Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin. Mech Time-Depend Mater. 2017;21:419–454. doi:10.1007/s11043-016-9336-6
  • Breite C. Aligning fibre break models for composites with the observable micro-scale material behaviour [PhD thesis]. KU Leuven, 2021.
  • Tripathi D, Chen F, Jones FR. The effect of matrix plasticity on the stress fields in a single filament composite and the value of interfacial shear strength obtained from the fragmentation test. Proc R Soc London Ser A. 1996;452:621–653. doi:10.1098/rspa.1996.0032
  • Pisanova EV, Zhandarov SF. On the mechanism of failure in microcomposites consisting of single glass fibres in a thermoplastic matrix. Compos Sci Technol. 1997;57:937–943. doi:10.1016/S0266-3538(97)00022-5
  • Piggott MR, Chua PS, Andison D. The interface between glass and carbon fibers and thermosetting polymers. Polym Compos. 1985;6:242–248. doi:10.1002/pc.750060409
  • Chua PS, Piggott MR. The glass fibre-polymer interface: II—work of fracture and shear stresses. Compos Sci Technol. 1985;22:107–119. doi:10.1016/0266-3538(85)90079-X
  • Melanitis N, Galiotis C, Tetlow PL, et al. Interfacial shear stress distribution in model composites part 2: fragmentation studies on carbon fibre/epoxy systems. J Compos Mater. 1992;26:574–610. doi:10.1177/002199839202600407
  • Shiriajeva GV, Andreevskaya GD. Sov Plast. 1962;4:40.
  • Favre JP, Perrin J. Carbon fibre adhesion to organic matrices. J Mater Sci. 1972;7:1113–1118. doi:10.1007/BF00550192
  • Hampe A. Grundlegende untersuchungen an faserverstärkten polymeren. Amts Mitteilungsblatt BAM. 1988;18:3–7.
  • Hampe A, Kalinka G, Meretz S, et al. An advanced equipment for single-fibre pull-out test designed to monitor the fracture process. Composites. 1995;26:40–46. doi:10.1016/0010-4361(94)P3628-E
  • Chua PS, Piggott MR. The glass fibre-polymer interface: I-theoretical consideration for single fibre pull-out tests. Compos Sci Technol. 1985;22:33–42. doi:10.1016/0266-3538(85)90089-2
  • Piggott MR. Debonding and friction at fibre-polymer interfaces. I: criteria for failure and sliding. Compos Sci Technol. 1987;30:295–306. doi:10.1016/0266-3538(87)90017-0
  • DiFrancia C, Ward TC, Claus RO. The single-fibre pull-out test. 1: review and interpretation. Composites: Part A. 1996;27:597–612. doi:10.1016/1359-835X(95)00069-E
  • Jiang KR, Penn LS. Improved analysis and experimental evaluation of the single filament pull-out test. Compos Sci Technol. 1992;45:89–103. doi:10.1016/0266-3538(92)90031-W
  • Kelly A. Interface effects and the work of fracture of a fibrous composite. R Soc London Ser A Math Phys Sci. 1970;319:95–116.
  • Takaku A, Arridge RGC. The effect of interfacial radial and shear stress on fibre pull-out in composite materials. J Phys D Appl Phys. 1973;6:2038–2047. doi:10.1088/0022-3727/6/17/310
  • Piggott MR. The single-fibre pull-out method: its advantages, interpretation and experimental realization. Compos Interfaces. 1993;1:211–223. doi:10.1163/156855493X00086
  • Bannister DJ, Andrews MC, Cervenka AJ, et al. Analysis of the single-fibre pull-out test by means of Raman spectroscopy: part II. Micromechanics of deformation for an aramid/epoxy system. Compos Sci Technol. 1995;53:411–421. doi:10.1016/0266-3538(95)00030-5
  • Wang C. Fracture mechanics of single-fibre pull-out test. J Mater Sci. 1997;32:483–490. doi:10.1023/A:1018534323464
  • Leung CKY, Li VC. New strength-based model for the debonding of discontinuous fibres in an elastic matrix. J Mater Sci. 1991;26:5996–6010. doi:10.1007/BF01113875
  • Noda NA, Chen D, Zhang G, et al. Single-fiber pull-out analysis comparing the intensities of singular stress fields (ISSFs) at fiber end/entry points. Int J Mech Sci. 2020;165:105196. doi:10.1016/j.ijmecsci.2019.105196
  • Zhou L-M, Kim J-K, Mai Y-W. On the single fibre pull-out problem: effect of loading method. Compos Sci Technol. 1992;45:153–160. doi:10.1016/0266-3538(92)90037-4
  • Mäder E, Mörschei U, Effing M. Quality assessment of composites. JEC Compos Mag. 2016;53:49–51.
  • Chua PS, Piggott MR. The glass fibre-polymer interface: III—pressure and coefficient of friction. Compos Sci Technol. 1985;22:185–196. doi:10.1016/0266-3538(85)90032-6
  • Tsai K-H, Kim K-S. The micromechanics of fiber pull-out. J Mech Phys Solids. 1996;44:1147–1177. doi:10.1016/0022-5096(96)00019-1
  • Zhandarov SF, Edith M, Schef C, et al. Investigation of interfacial strength parameters in polymer matrix composites: compatibility and reproducibility. Adv Ind Eng Polym Res. 2018;1:82–92. doi:10.1016/j.aiepr.2018.06.002
  • Deng S, Ye L, Mai YW. Measurement of interfacial shear strength of carbon fibre/epoxy composites using a single fibre pull-out test. Adv Compos Mater. 1998;7:169–182. doi:10.1163/156855198X00129
  • Patrikis AK, Andrews MC, Young RJ. Analysis of the single-fibre pull-out test by the use of Raman spectroscopy. Part I: pull-out of aramid fibres from an epoxy resin. Compos Sci Technol. 1994;52:387–396. doi:10.1016/0266-3538(94)90173-2
  • Gu XH, Young RJ, Day RJ. Deformation micromechanics in model carbon fiber reinforced composites, part I the single-fibre pull-out test. J Mater Sci. 1995;30:1409–1419. doi:10.1007/BF00375240
  • Pisanova E, Zhandarov SF, Mäder E, et al. Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer-fibre systems. Composites Part A. 2001;32:435–443. doi:10.1016/S1359-835X(00)00054-3
  • Zhong W, Pan N. A computer simulation of single fiber pull out process in a composite. J Compos Mater. 2003;37:1951–1969. doi:10.1177/002199803036267
  • Delfolie C, Depecker C, Lefebvre JM. Interfacial phenomena in glass fibre reinforced polyester resin with low profile additives. part I micromechanical evaluation by pull out testing. J Mater Sci. 1999;34:481–495. doi:10.1023/A:1004582310207
  • Greszczuk LB. Interfaces in composites. ASTM STP. 1969;452:42–58.
  • Greszczuk LB. Theoretical studies of the mechanics of the fiber-matrix interface in composites. Interface Compos. 1969:42–58. doi:10.1520/STP44699S
  • Pitkethly MJ, Doble JB. Characterizing the fibre/matrix interface of carbon fibre-reinforced composites using a single fibre pull-out test. Composites. 1990;21:389–395. doi:10.1016/0010-4361(90)90436-Z
  • Lawrence P. Some theoretical considerations of fibre pull-out from an elastic matrix. J Mater Sci. 1972;7:1–6. doi:10.1007/BF00549541
  • Zhang XB, Aljewifi H, Li J. Failure mechanism investigation of continuous fibre reinforced cementitious composites by pull-out behaviour analysis. Procedia Mater Sci. 2014;3:1377–1382. doi:10.1016/j.mspro.2014.06.222
  • Hsueh CH. Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites, III. With residual radial and axial stresses. Mater Sci Eng A. 1991;149:1–9.
  • Hsueh CH. Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites, X: with an elastic interfacial coating. Mater Sci Eng A. 1993;165:189–195. doi:10.1016/0921-5093(93)90754-3
  • Zhang X, Liu H, Mai Y, et al. On steady-state fibre pull-out: I the stress field. Compos Sci Technol. 1999;59:2179–2189. doi:10.1016/S0266-3538(99)00110-4
  • Fu SY, Yue CY, Hu X, et al. Analyses of the micromechanics of stress transfer in single- and multi-fiber pull-out tests. Compos Sci Technol. 2000;60:569–579. doi:10.1016/S0266-3538(99)00157-8
  • Marotzke C, Qiao L. Interfacial crack propagation arising in single-fiber pull-out tests. Compos Sci Technol. 1997;57:887–897. doi:10.1016/S0266-3538(96)00179-0
  • Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc London Ser A. 1920;221:163–168.
  • Outwarter JD, Murphy MC. On the fracture energy of unidirectional laminates. In: Proceedings of the 24th Annual Technical Conference of the Reinforced Plastics Composites Institute, SPI; New York; 1969.
  • Teklal F, Djebbar A, Allaoui S, et al. A review of analytical models to describe pull-out behavior – fiber/matrix adhesion. Compos Struct. 2018;201:791–815. doi:10.1016/j.compstruct.2018.06.091
  • Piggott MR, Sanadi A, Chua PS, et al. Mechanical interactions in the interphasial region of fibre reinforced thermosets. Compos Interfaces. 1986:109–121.
  • Penn LS, Chou CT. Identification of factors affecting single filament pull-out test results. ASTM Int, Am Soc Test Mater. 1990;12(3). doi:10.1520/CTR10193J
  • Burn DT, Harper LT, Johnson M, et al. The usability of recycled carbon fibres in short fibre thermoplastics: interfacial properties. J Mater Sci. 2016;51:7699–7715. doi:10.1007/s10853-016-0053-y
  • Penn LS, Lee SM. Interpretation of experimental results in the single pull-out filament test. J Compos Technol Res. 1989;11:23–30. doi:10.1520/CTR10145J
  • Zhou L-M, Mai Y-W. On the single fibre pullout and pushout problem: effect of fibre anisotropy. ZAMP Zeitschr Angew Math Phys. 1993;44:769–775. doi:10.1007/BF00948488
  • Liu H-Y, Zhou L-M, Mai Y-W. On fibre pull-out with a rough interface. Philos Mag A. 1994;70:359–372.
  • Kim J, Zhou L, Bryan SJ, et al. Effects of fibre volume fraction on the stress transfer in fibre pull-out tests. Composites. 1994;25:470–475. doi:10.1016/0010-4361(94)90171-6
  • Zhou L-M, Kim J-K, Mai Y-W. Interfacial debonding and fibre pull-out stresses, part II a new model based on the fracture mechanics approach. J Mater Sci. 1992;27:3155–3166. doi:10.1007/BF01116005
  • Kim J-K, Baillie C, Mai Y-W. Interfacial debonding and fibre pull-out stresses, part I critical comparison of existing theories with experiments. J Mater Sci. 1992;27:3143–3154. doi:10.1007/BF01116004
  • Hsueh CH. Theoretical comparison of two loading methods in fiber pull-out tests. Mater Sci Eng A. 1990;130:L11–L15. doi:10.1016/0921-5093(90)90070-J
  • Kim JK, Zhou L, Mai YW. Stress transfer in the fibre fragmentation test - part I an improved analysis based on a shear strength criterion. J Mater Sci. 1993;28:6233–6245. doi:10.1007/BF00365049
  • Atkinson C, Avila J, Betz E, et al. The rod pull out problem, theory and experiment. J Mech Phys Solids. 1982;30:97–120. doi:10.1016/0022-5096(82)90019-9
  • Beckert W, Lauke B. Critical discussion of the single-fibre pull-out test: does it measure adhesion? Compos Sci Technol. 1998;57:1689–1706. doi:10.1016/S0266-3538(97)00107-3
  • Sun W, Lin F. Computer modeling and FEA simulation for composite single fiber pull-out. J Thermoplast Compos Mater. 2001;14:327–343. doi:10.1106/YKDM-PX8K-NF6Q-L7FK
  • Tsai JH, Patra A, Wetherhold R. Finite element simulation of shaped ductile fiber pullout using a mixed cohesive zone/friction interface model. Composites Part A. 2005;36:827–838. doi:10.1016/j.compositesa.2004.10.025
  • Jia YY, Yan W, Liu H-Y. Numerical study on carbon fibre pullout using a cohesive zone model. In: Proceedings of the International Conferences on Composite Materials; Jeju Island, South Korea; 2011.
  • Jia Y, Yan W, Liu H-Y. Carbon fibre pullout under the influence of residual thermal stresses in polymer matrix composites. Comput Mater Sci. 2012;62:79–86. doi:10.1016/j.commatsci.2012.05.019
  • Hoppe L. Numerical simulation of fiber-matrix debonding in single fiber pull-out tests. GAMM Arch Stud. 2020;2:21–35. doi:10.14464/gammas.v2i1.437
  • Bheemreddy V, Chandrashekhara K, Dharani LR, et al. Modeling of fiber pull-out in continuous fiber reinforced ceramic composites using finite element method and artificial neural networks. Comput Mater Sci. 2013;79:663–673. doi:10.1016/j.commatsci.2013.07.026
  • Piggott MR, Chua PS. Recent studies of the glass fiber-polymer interphase. Ind Eng Chem Res. 1987;26:672–677. doi:10.1021/ie00064a007
  • Liu H, Zhang X, Mai Y, et al. On steady-state fibre pull-out: II computer simulation. Compos Sci Technol. 1999;59:2191–2199. doi:10.1016/S0266-3538(99)00060-3
  • Kerans RJ, Parthasarathy TA. Theoretical analysis of the fiber pullout and pushout tests. J Am Ceram Soc. 1991;74:1585–1596. doi:10.1111/j.1151-2916.1991.tb07144.x
  • Kessler H, Schüller T, Beckert W, et al. A fracture-mechanics model of the microbond test with interface friction. Compos Sci Technol. 1999;59:2231–2242. doi:10.1016/S0266-3538(99)00078-0
  • Nairn JA. Analytical fracture mechanics analysis of the pull-out test including the effects of friction and thermal stresses. Adv Compos Lett. 2000;9:373–383. doi:10.1177/096369350000900601
  • Wu W, Verpoest I, Varna J. Prediction of energy release rate due to the growth of an interface crack by variational analysis. Compos Sci Technol. 2000;60:351–360. doi:10.1016/S0266-3538(99)00130-X
  • Sørensen BF, Lilholt H. Fiber pull-out test and single fiber fragmentation test - analysis and modelling. IOP Conference Series: Materials Science and Engineering, 37th Risø International Symposium on Materials Science 2016; 139.
  • Zhandarov SF, Mäder E. Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. Compos Sci Technol. 2005;65:149–160. doi:10.1016/j.compscitech.2004.07.003
  • Miller B, Muri P, Rebenfeld L. A microbond method for determination of the shear strength of a fiber/resin interface. Compos Sci Technol. 1987;28:17–32. doi:10.1016/0266-3538(87)90059-5
  • Ash JT, Cross WM, Svalstad D, et al. Finite element evaluation of the microbond test: meniscus effect, interphase region, and vise angle. Compos Sci Technol. 2003;63:641–651. doi:10.1016/S0266-3538(02)00256-7
  • Miller B, Gaur U, Hirt DE. Measurement and mechanical aspects of the microbond pull-out technique for obtaining fiber/resin interfacial shear strength. Compos Sci Technol. 1991;42:207–219. doi:10.1016/0266-3538(91)90018-K
  • van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev. 1988;88:927–941. doi:10.1021/cr00088a006
  • Lu C, Wang J, Lu X, et al. Wettability and interfacial properties of carbon fiber and poly(ether ether ketone) fiber hybrid composite. ACS Appl Mater Interfaces. 2019;11:31520–31531. doi:10.1021/acsami.9b09735
  • Carroll BJ. The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. J Colloid Interface Sci. 1976;57:488–495. doi:10.1016/0021-9797(76)90227-7
  • Yamaki JI, Katayama Y. New method of determining contact angle between monofilament and liquid. J Appl Polym Sci. 1975;19:2897–2909. doi:10.1002/app.1975.070191025
  • Song B, Bismarck A, Tahhan R, et al. A generalized drop length-height method for determination of contact angle in drop-on-fiber systems. J Colloid Interface Sci. 1998;197:68–77. doi:10.1006/jcis.1997.5218
  • Wu XF, Dzenis YA. Droplet on a fiber: geometrical shape and contact angle. Acta Mech. 2006;185:215–225. doi:10.1007/s00707-006-0349-0
  • Wagner HD, Gallis HE, Wiesel E. Spreading of liquid droplets on cylindrical surfaces: accurate determination of contact angle. J Appl Phys. 1990;67:1352–1355. doi:10.1063/1.345689
  • Yamaguchi A, Hashimoto T, Uematsu H, et al. Investigation of interfacial adhesion of telechelic polypropylenes for carbon fiber-reinforced plastics. Polym J. 2020;52:413–419. doi:10.1038/s41428-019-0295-z
  • Nishikawa M, Okabe T, Hemmi K, et al. Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites. Int J Solids Struct. 2008;45:4098–4113. doi:10.1016/j.ijsolstr.2008.02.021
  • Mendels DA, Leterrier Y, Månson JAE. The influence of internal stresses on the microbond test - I: theoretical analysis. J Compos Mater. 2002;36:347–363. doi:10.1177/0021998302036003508
  • Herrera-Franco PJ, Drzal LT. Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites. 1992;23:2–27. doi:10.1016/0010-4361(92)90282-Y
  • Laurikainen P, Kakkonen M, von Essen M, et al. Identification and compensation of error sources in the microbond test utilising a reliable high-throughput device. Composites Part A. 2020;137:105988. doi:10.1016/j.compositesa.2020.105988
  • Schüller T, Bahr U, Beckert W, et al. Fracture mechanics analysis of the microbond test. Composites Part A. 1998;29:1083–1089. doi:10.1016/S1359-835X(98)00044-X
  • Hampe A, Marotzke C. The energy release rate of the fiber/polymer matrix interface: measurement and theoretical analysis. J Reinf Plast Compos. 1997;16:341–352. doi:10.1177/073168449701600405
  • Minnicino MA, Santare MH. Modeling the progressive damage of the microdroplet test using contact surfaces with cohesive behavior. Compos Sci Technol. 2012;72:2024–2031. doi:10.1016/j.compscitech.2012.09.009
  • Sockalingam S, Dey M, Gillespie JW, et al. Finite element analysis of the microdroplet test method using cohesive zone model of the fiber/matrix interface. Composites Part A. 2014;56:239–247. doi:10.1016/j.compositesa.2013.10.021
  • Choi NS, Park JE, Kang SK. Quasi-disk type microbond pull-out test for evaluating fiber/matrix adhesion in composites. J Compos Mater. 2009;43:1663–1677. doi:10.1177/0021998309339636
  • Gaur U, Miller B. Microbond method for determination of the shear strength of a fiber/resin interface: evaluation of experimental parameters. Compos Sci Technol. 1989;34:35–51. doi:10.1016/0266-3538(89)90076-6
  • Zykaite R, Purgleitner B, Stadlbauer W, et al. Microdebond test development and interfacial shear strength evaluation of basalt and glass fibre reinforced polypropylene composites. J Compos Mater. 2017;51:4091–4099. doi:10.1177/0021998317697810
  • Gonon L, Momtaz A, Van Hoyweghen D, et al. Physico-chemical and micromechanical analysis of the interface in a poly(phenylene sulfide)/glass fiber composite—a microbond study. Polym Compos. 1996;17:265–274. doi:10.1002/pc.10611
  • Gaur U, Desio G, Miller B. Measuring fiber/matrix adhesion in thermoplastic composites. Plast Eng. 1989;October:43–45.
  • Yang L, Thomason JL. Development and application of micromechanical techniques for characterising interfacial shear strength in fibre-thermoplastic composites. Polym Test. 2012;31:895–903. doi:10.1016/j.polymertesting.2012.07.001
  • Liu B, Liu Z, Wang X, et al. Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polym Test. 2013;32:724–730. doi:10.1016/j.polymertesting.2013.03.020
  • Kang SK, Lee DB, Choi NS. Fiber/epoxy interfacial shear strength measured by the microdroplet test. Compos Sci Technol. 2009;69:245–251. doi:10.1016/j.compscitech.2008.10.016
  • Rao V, Herrera-Franco P, Ozzello AD, et al. A direct comparison of the fragmentation test and the microbond pull-out test for determining the interfacial shear strength. J Adhes. 1991;34:65–77. doi:10.1080/00218469108026506
  • Hodzic A, Kalyanasundaram S, Lowe A, et al. The microdroplet test: experimental and finite element analysis of the dependence of failure mode on droplet shape. Compos Interfaces. 1998;6:375–389. doi:10.1163/156855498X00379
  • Zhandarov SF, Mäder E. Peak force as function of the embedded length in pull-out and microbond tests: effect of specimen geometry. J Adhes Sci Technol. 2005;19:817–855. doi:10.1163/1568561054929937
  • Schober M. On the Characterization and Modeling of Interfaces in Fiber Reinforced Polymer Structures (PhD Thesis). Karlsruhe Institute of Technology, 2019.
  • Morlin B, Czigany T. Cylinder test: development of a new microbond method. Polym Test. 2012;31:164–170. doi:10.1016/j.polymertesting.2011.10.007
  • Zhandarov SF, Pisanova E, Mäder E. Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test. J Adhes Sci Technol. 2005;19:679–704. doi:10.1163/1568561054890462
  • Zinck P, Wagner HD, Salmon L, et al. Are microcomposites realistic models of the fibre/matrix interface? II. Physico-chemical approach. Polymer. 2001;42:6641–6650. doi:10.1016/S0032-3861(00)00871-5
  • Liu Z, Yuan X, Beck AJ, et al. Analysis of a modified microbond test for the measurement of interfacial shear strength of an aqueous-based adhesive and a polyamide fibre. Compos Sci Technol. 2011;71:1529–1534. doi:10.1016/j.compscitech.2011.06.001
  • Zhandarov SF, Gorbatkina Y, Mäder E. Adhesional pressure as a criterion for interfacial failure in fibrous microcomposites and its determination using a microbond test. Compos Sci Technol. 2006;66:2610–2628. doi:10.1016/j.compscitech.2006.03.023
  • Choi NS, Park JE. Fiber/matrix interfacial shear strength measured by a quasi-disk microbond specimen. Compos Sci Technol. 2009;69:1615–1622. doi:10.1016/j.compscitech.2009.03.012
  • Hou Y, Sun T. An improved method to make the microdroplet single fiber composite specimen for determining the interfacial shear strength. J Mater Sci. 2012;47:4775–4778. doi:10.1007/s10853-012-6317-2
  • Thomason J. An overview of some scaling issues in the sample preparation and data interpretation of the microbond test for fibre–matrix interface characterisation. Polym Test. 2022;111:107591. doi:10.1016/j.polymertesting.2022.107591
  • Haaksma RA, Cehelnik MJ. A critical evaluation of the use of the microbond method for determination of composite interfacial properties. MRS Proc. 1989;170:71–76. doi:10.1557/PROC-170-71
  • Brahatheeswaran C, Gupta VB. Internal stress in a cured epoxy resin system. Polymer. 1993;34:289–294. doi:10.1016/0032-3861(93)90079-P
  • Lange J, Toll S, Månson JAE, et al. Residual stress build-up in thermoset films cured above their ultimate glass transition temperature. Polymer. 1995;36:3135–3141. doi:10.1016/0032-3861(95)97876-H
  • Mendels DA, Leterrier Y, Manson J-AE, et al. The influence of internal stresses on the microbond test II: physical aging and adhesion. J Compos Mater. 2002;36:1655–1676. doi:10.1177/0021998302036014166
  • Thomason JL, Yang L. Temperature dependence of the interfacial shear strength in glass-fibre polypropylene composites. Compos Sci Technol. 2011;71:1600–1605. doi:10.1016/j.compscitech.2011.07.006
  • Zhandarov SF, Pisanova E, Lauke B. Is there any contradiction between the stress and energy failure criteria in micromechanical tests? part I. crack initiation: stress-controlled or energy-controlled? Compos Interfaces. 1997;5:387–404. doi:10.1163/156855498X00225
  • Zhandarov SF, Pisanova E, Mäder E. Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part II. Crack propagation: effect of friction on force-displacement curves. Compos Interfaces. 2000;7:149–175. doi:10.1163/156855400300185289
  • Zhandarov SF, Pisanova E, Schneider K. Fiber-stretching test: a new technique for characterizing the fiber-matrix interface using direct observation of crack initiation and propagation. J Adhes Sci Technol. 2000;14:381–398. doi:10.1163/156856100742663
  • Zhandarov SF, Mäder E. Determining the interfacial toughness from force-displacement curves in the pull-out and microbond tests using the alternative method. Int J Adhes Adhes. 2016;65:11–18. doi:10.1016/j.ijadhadh.2015.10.020
  • Scheer RJ, Nairn JA. A comparison of several fracture mechanics methods for measuring interfacial toughness with microbond tests. J Adhes. 1995;53:45–68. doi:10.1080/00218469508014371
  • Liu CH, Nairn JA. Analytical and experimental methods for a fracture mechanics interpretation of the microbond test including the effects of friction and thermal stresses. Int J Adhes Adhes. 1999;19:59–70. doi:10.1016/S0143-7496(98)00057-8
  • Zhandarov SF, Pisanova EV. The local bond strength and its determination by fragmentation and pull-out tests. Compos Sci Technol. 1997;57:957–964. doi:10.1016/S0266-3538(97)00037-7
  • Gorbatkina YA, Khazanovich TN. In Proceedings of the 5th All-Union Congress on Theoretic and Applied Mechanics; Nauka, Alma-Ata, Kazakhstan; 1981.
  • Zhandarov SF, Mäder E, Yurkevich OR. Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part I: local bond strength. J Adhes Sci Technol. 2002;16:1171–1200. doi:10.1163/156856102320256837
  • Zhandarov SF, Mäder E. Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part II: critical energy release rate. J Adhes Sci Technol. 2003;17:967–980. doi:10.1163/156856103322112879
  • Marotzke C. Influence of the fiber length on the stress transfer from glass and carbon fibers into a thermoplastic matrix in the pull-out test. Compos Interfaces. 1993;1:153–166. doi:10.1163/156855493X00040
  • Scheer RJ, Nairn JA. Variational mechanics analysis of stresses and failure in microdrop debond specimens. Compos Eng. 1992;2:641–654. doi:10.1016/0961-9526(92)90022-X
  • Gu X, Young RJ. Deformation micromechanics in model carbon fiber reinforced composites part II: the microbond test. Text Res J. 1997;67:93–100. doi:10.1177/004051759706700204
  • Wu HF, Claypool CM. An analytical approach of the microbond test method used in characterizing the fibre–matrix interface. J Mater Sci Lett. 1991;10:260–262. doi:10.1007/BF00735651
  • Wu HF, Claypool CM. A finite-element model of the use of the microbond test method for characterization of composite interfacial properties. J Mater Sci Lett. 1991;10:1072–1075. doi:10.1007/BF00720128
  • Pandey G, Kareliya CH, Singh RP. A study of the effect of experimental test parameters on data scatter in microbond testing. J Compos Mater. 2012;46:275–284. doi:10.1177/0021998311410508
  • Zinck P, Wagner HD, Salmon L, et al. Are microcomposites realistic models of the fibre/matrix interface? I. Micromechanical modelling. Polymer. 2001;42:5401–5413. doi:10.1016/S0032-3861(00)00870-3
  • Zhandarov SF, Mäder E. An alternative method of determining the local interfacial shear strength from force-displacement curves in the pull-out and microbond tests. Int J Adhes Adhes. 2014;55:37–42. doi:10.1016/j.ijadhadh.2014.07.006
  • Pisanova E, Zhandarov SF, Mäder E. How can adhesion be determined from micromechanical tests? Composites Part A. 2001;32:425–434. doi:10.1016/S1359-835X(00)00055-5
  • Piggott MR. A new model for interface failure in fibre-reinforced polymers. Compos Sci Technol. 1995;55:269–276. doi:10.1016/0266-3538(95)00103-4
  • Banholzer B, Brameshuber W. Eine methode zur beschreibung des verbundes zwischen faser und zementgebundener matrix. Beton- und Stahlbetonbau. 2001;96:663–669. doi:10.1002/best.200100850
  • Brameshuber W, Banholzer B, Brümmer G. Ansatz für eine vereinfachte Auswertung von Faser- Ausziehversuchen. Beton- und Stahlbetonbau. 2000;95:702–706. doi:10.1002/best.200001340
  • Zhandarov SF, Mäder E. Determination of interfacial parameters in fiber-polymer systems from pull-out test data using a bilinear bond law. Compos Interfaces. 2004;11:361–391. doi:10.1163/1568554042246233
  • Chou CT, Gaur U, Miller B. The effect of microvise gap width on microbond pull-out test results. Compos Sci Technol. 1994;51:111–116. doi:10.1016/0266-3538(94)90161-9
  • Mendels D-A, Leterrier Y, Manson J-AE. Stress transfer model for single fibre and platelet composites. J Compos Mater. 1999;33:1525–1543. doi:10.1177/002199839903301604
  • Dsouza R, Antunes P, Kakkonen M, et al. 3D interfacial debonding during microbond testing: advantages of local strain recording. Compos Sci Technol. 2020;195:108163. doi:10.1016/j.compscitech.2020.108163
  • Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8:100–104. doi:10.1016/0022-5096(60)90013-2
  • Nishikawa M, Okabe T, Takeda N. Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading. Int J Solids Struct. 2007;44:3101–3113. doi:10.1016/j.ijsolstr.2006.09.007
  • Nian G, Li Q, Xu Q, et al. A cohesive zone model incorporating a Coulomb friction law for fiber-reinforced composites. Compos Sci Technol. 2018;157:195–201. doi:10.1016/j.compscitech.2018.01.037
  • Zhi C, Long H, Miao M. Microbond testing and finite element simulation of fibre-microballoon-epoxy ternary composites. Polym Test. 2018;65:450–458. doi:10.1016/j.polymertesting.2017.12.029
  • Gu X, Young RJ. Deformation micromechanics in model carbon fiber reinforced composites part I: the single-fibre pull-out test. Text Res J. 1995;30:1409–1419.
  • Piggott MR. Why the fibre/polymer interface can appear to be stronger than the polymer matrix. Compos Sci Technol. 1997;57:853–857. doi:10.1016/S0266-3538(96)00151-0
  • Järvelä P, Laitinen KW, Purola J, et al. The three-fibre method for measuring glass fibre to resin bond strength. Int J Adhes Adhes. 1983;3:141–147. doi:10.1016/0143-7496(83)90119-7
  • Bryce D, Thomason J, Yang L. Micromechanical and spectroscopic characterisation of the curing performance of epoxy resins in the microbond test. In: IOP Conf Series: Materials Science and Engineering (41st Risø International Symposium on Materials Science) 2020; 942.
  • Thomason JL, Jenkins PG, Xypolias G. Microbond testing of the interface in glass fibre vinylester composites. Compos Interfaces. 2022;29:695–709. doi:10.1080/09276440.2021.2011593
  • Yang L, Thomason JL, Zhu W. The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene. Composites Part A. 2011;42:1293–1300. doi:10.1016/j.compositesa.2011.05.011
  • Thomason JL, Yang L. Temperature dependence of the interfacial shear strength in glass-fibre epoxy composites. Compos Sci Technol. 2014;96:7–12. doi:10.1016/j.compscitech.2014.03.009
  • Minty RF, Yang L, Thomason JL. The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy composites. Composites Part A. 2018;112:64–70. doi:10.1016/j.compositesa.2018.05.033
  • Mandell JF, Chen JH, McGarry FJ. A microdebonding test for in situ assessment of fibre/matrix bond strength in composite materials. Int J Adhes Adhes. 1980;1:40–44. doi:10.1016/0143-7496(80)90033-0
  • Gibson RF. A review of recent research on nanoindentation of polymer composites and their constituents. Compos Sci Technol. 2014;105:51–65. doi:10.1016/j.compscitech.2014.09.016
  • González C, Vilatela JJ, Molina-Aldareguía JM, et al. Structural composites for multifunctional applications: current challenges and future trends. Prog Mater Sci. 2017;89:194–251. doi:10.1016/j.pmatsci.2017.04.005
  • Kalinka G, Leistner A, Hampe A. Characterisation of the fibre/matrix interface in reinforced polymers by the push-in technique. Compos Sci Technol. 1997;57:845–851. doi:10.1016/S0266-3538(96)00159-5
  • Marshall DB, Oliver WC. Measurement of interfacial mechanical properties in fiber-reinforced ceramic composites. J Am Ceram Soc. 1987;70:542–548. doi:10.1111/j.1151-2916.1987.tb05702.x
  • Greisel M, Jäger J, Moosburger-Will J, et al. Influence of residual thermal stress in carbon fiber-reinforced thermoplastic composites on interfacial fracture toughness evaluated by cyclic single-fiber push-out tests. Composites Part A. 2014;66:117–127. doi:10.1016/j.compositesa.2014.07.010
  • Marshall DB. An indentation method for measuring matrix-fiber frictional stresses in ceramic composites. J Am Ceram Soc. 1984;67:C-259–C-260. doi:10.1111/j.1151-2916.1984.tb19690.x
  • Marshall DB. Analysis of fiber debonding and sliding experiments in brittle matrix composites. Acta Metall Mater. 1992;40:427–441. doi:10.1016/0956-7151(92)90391-Q
  • Kharrat M, Chateauminois A, Carpentier L, et al. On the interfacial behaviour of a glass/epoxy composite during a micro-indentation test: assessment of interfacial shear strength using reduced indentation curves. Composites Part A. 1997;28:39–46. doi:10.1016/S1359-835X(96)00092-9
  • Zidi M, Carpentier L, Chateauminois A, et al. Quantitative analysis of the micro-indentation behaviour of fibre-reinforced composites: development and validation of an analytical model. Compos Sci Technol. 2000;60:429–437. doi:10.1016/S0266-3538(99)00143-8
  • Desaeger M, Verpoest I. On the use of the micro-indentation test technique to measure the interfacial shear strength of fibre-reinforced polymer composites. Compos Sci Technol. 1993;48:215–226. doi:10.1016/0266-3538(93)90139-8
  • Molina-Aldareguía JM, Rodríguez M, González C, et al. An experimental and numerical study of the influence of local effects on the application of the fibre push-in test. Philos Mag. 2011;91:1293–1307. doi:10.1080/14786435.2010.480947
  • Rodríguez M, Molina-Aldareguía JM, González C, et al. A methodology to measure the interface shear strength by means of the fiber push-in test. Compos Sci Technol. 2012;72:1924–1932. doi:10.1016/j.compscitech.2012.08.011
  • Medina C, Molina-Aldareguía JM, González C, et al. Comparison of push-in and push-out tests for measuring interfacial shear strength in nano-reinforced composite materials. J Compos Mater. 2016;50:1651–1659. doi:10.1177/0021998315595115
  • Brunner AJ, Schwiedrzik JJ, Mohanty G, et al. Fiber push-in failure in carbon fiber epoxy composites. Procedia Struct Integrity. 2020;28:538–545. doi:10.1016/j.prostr.2020.10.063
  • Wang J, Feng Y, Zhao G, et al. Effect of elastic and thermal mismatch on push-in mechanism and shear strength measurement of fiber/matrix interface. Compos Interfaces. 2020;27:921–935. doi:10.1080/09276440.2020.1712917
  • Watanabe T, Takeichi Y, Niwa Y, et al. Nanoscale in situ observations of crack initiation and propagation in carbon fiber/epoxy composites using synchrotron radiation X-ray computed tomography. Compos Sci Technol. 2020;197:108244. doi:10.1016/j.compscitech.2020.108244
  • Ghaffari S, Seon G, Makeev A. In-situ SEM based method for assessing fiber-matrix interface shear strength in CFRPs. Mater Design. 2021;197:109242. doi:10.1016/j.matdes.2020.109242
  • Li X, Yang Q, Liu Z. Interfacial mechanics of fiber push-out test: nano-indention technique and cohesive element modeling. In: Proceedings of the 13th International Conference on Fracture, 6; Beijing, China; 2013.
  • Jäger J, Sause MGR, Burkert F, et al. Influence of plastic deformation on single-fiber push-out tests of carbon fiber reinforced epoxy resin. Composites Part A. 2015;71:157–167. doi:10.1016/j.compositesa.2015.01.011
  • Ramanathan T, Bismarck A, Schulz E, et al. Investigation of the influence of surface-activated carbon fibres on debonding energy and frictional stress in polymer-matrix composites by the micro-indentation technique. Compos Sci Technol. 2001;61:2511–2518. doi:10.1016/S0266-3538(01)00169-5
  • Ghaffari S, Makeev A, Seon G, et al. Understanding compressive strength improvement of high modulus carbon-fiber reinforced polymeric composites through fiber-matrix interface characterization. Mater Design. 2020;193:108798. doi:10.1016/j.matdes.2020.108798
  • Rohrmüller B, Gumbsch P, Hohe J. Calibrating a fiber-matrix interface failure model to single fiber push-out tests and numerical simulations. Composites Part A. 2021;150:106607. doi:10.1016/j.compositesa.2021.106607
  • Esqué-De Los Ojos D, Ghisleni R, Battisti A, et al. Understanding the mechanical behavior of fiber/matrix interfaces during push-in tests by means of finite element simulations and a cohesive zone model. Comput Mater Sci. 2016;117:330–337. doi:10.1016/j.commatsci.2016.02.009
  • Corujeira Gallo S, Li X, Zhang Z, et al. Viscoelastic response of carbon fibre reinforced polymer during push-out tests. Composites Part A. 2018;112:178–185. doi:10.1016/j.compositesa.2018.06.003
  • Battisti A, Esqué-de los Ojos D, Ghisleni R, et al. Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Compos Sci Technol. 2014;95:121–127. doi:10.1016/j.compscitech.2014.02.017
  • Mueller WM, Moosburger-Will J, Sause MGR, et al. Microscopic analysis of single-fiber push-out tests on ceramic matrix composites performed with Berkovich and flat-end indenter and evaluation of interfacial fracture toughness. J Eur Ceram Soc. 2013;33:441–451. doi:10.1016/j.jeurceramsoc.2012.09.009
  • Lin G, Geubelle PH, Sottos NR. Simulation of fiber debonding with friction in a model composite pushout test. Int J Solids Struct. 2001;38:8547–8562. doi:10.1016/S0020-7683(01)00085-3
  • Sakharova NA, Fernandes JV, Antunes JM, et al. Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int J Solids Struct. 2009;46:1095–1104. doi:10.1016/j.ijsolstr.2008.10.032
  • Hardiman M. Nanoindentation Characterisation of Carbon Fibre Reinforced Plastic Microstructures (PhD Thesis). University of Limerick, 2016.
  • De Meyere RMG, Song K, Gale L, et al. A novel trench fibre push-out method to evaluate interfacial failure in long fibre composites. J Mater Res. 2021;36:2305–2314. doi:10.1557/s43578-021-00153-1
  • Sun M, Feng Y, Xu J, et al. Design, analysis and experiment of the fiber push-out device based on piezoelectric actuator. Micromachines (Basel). 2021;12(11):1420. doi:10.3390/mi12111420
  • Zhao G, Liu H-Y, Du X, et al. Glass fibres coated with flame synthesised carbon nanotubes to enhance interface properties. Compos Commun. 2021;24:100623. doi:10.1016/j.coco.2020.100623
  • Hu J, Dong S, Feng Q, et al. Tailoring carbon nanotube/matrix interface to optimize mechanical properties of multiscale composites. Carbon. 2014;69:621–625. doi:10.1016/j.carbon.2013.12.005
  • Zhamu A, Zhong WH, Stone JJ. Experimental study on adhesion property of UHMWPE fiber/nano-epoxy by fiber bundle pull-out tests. Compos Sci Technol. 2006;66:2736–2742. doi:10.1016/j.compscitech.2006.03.005
  • Gorbatkina YA. Adhesive strength in fibre-polymer systems. New York: Ellis Horwood; 1992.
  • Andreevska GD, Gorbatkina YA. Adhesion of polymeric binders to glass fiber. Ind Eng Chem Prod Res Dev. 1972;11:24–26.
  • Zhou J, Li Y, Li N, et al. Interfacial shear strength of microwave processed carbon fiber/epoxy composites characterized by an improved fiber-bundle pull-out test. Compos Sci Technol. 2016;133:173–183. doi:10.1016/j.compscitech.2016.07.033
  • Alimuddin MA, Piggott MR. Fracture toughness of fiber-polymer interfaces estimated from single fiber peel tests. Polym Compos. 1999;20:655–663. doi:10.1002/pc.10388
  • Farooq MU, Carlsson LA, Acha BA. Determination of fiber/matrix adhesion using the outwater-Murphy single fiber specimen. Eng Fract Mech. 2009;76:2758–2765. doi:10.1016/j.engfracmech.2009.06.002
  • Gorbatkina YA, Ivanova-Mumzhieva VG, Gorenberg AY. Adhesive strength of bonds of polymers with carbon fibres at different loading rates. Fibre Chem. 1999;31:405–409. doi:10.1007/BF02364376
  • Broutman LJ. Measurement of the fiber-polymer matrix interfacial strength. Interfaces Compos ASTM Int. 1969:27–41. doi:10.1520/STP44698S
  • Sinclair R, Young RJ, Martin RDS. Determination of the axial and radial fibre stress distributions for the Broutman test. Compos Sci Technol. 2004;64:181–189. doi:10.1016/S0266-3538(03)00257-4
  • Ageorges C, Friedrich K, Schüller T, et al. Single-fibre Broutman test: fibre–matrix interface transverse debonding. Composites Part A. 1999;30:1423–1434. doi:10.1016/S1359-835X(99)00045-7
  • Vogtmann J, Klingler A, Rief T, et al. 3D x-ray microscopy as a tool for in depth analysis of the interfacial interaction between a single carbon fiber and an epoxy matrix after mechanical loading. J Compos Sci. 2021;5:121. doi:10.3390/jcs5050121
  • McDaniel PB, Deitzel JM, Gregory D, et al. Single fiber peel test to assess ultra high molecular weight polyethylene fiber mesostructure interactions. J Appl Polym Sci. 2018;135:1–11. doi:10.1002/app.46156
  • Alimuddin MA. Peel test for the evaluation of environmental effects on fiber-polymer interface (Master Thesis) (PhD Thesis). University of Toronto, 1999.
  • Crocombe AD, Adams RD. Peel analysis using the finite element method. J Adhes. 1981;12:127–139. doi:10.1080/00218468108071194
  • Outwater JO, Murphy MC. The influences of environment and glass finishes on the fracture energy of glass-epoxy joints. J Adhes. 1970;2:242–253. doi:10.1080/0021846708544598
  • Farooq MU, Carlsson LA, Acha BA. Design analysis of the outwater-Murphy single-fiber specimen. J Compos Mater. 2009;43:2455–2467. doi:10.1177/0021998309345318
  • Jero PD. Interfacial properties of SiC/borosilicate glass systems by indentation pushout. Am Ceram Soc. 1990;69:484.
  • Jero PD, Kerans RJ. The contribution of interfacial roughness to sliding friction of ceramic fibers in a glass matrix. Scr Metall Mater. 1990;24:2315–2318. doi:10.1016/0956-716X(90)90085-U
  • Jero PD, Kerans RJ, Parthasarathy TA. Effect of interfacial roughness on the frictional stress measured using pushout tests. J Am Ceram Soc. 1991;74:2793–2801. doi:10.1111/j.1151-2916.1991.tb06845.x
  • Cherouali H, Fantozzi G, Reynaud P, et al. Analysis of interfacial sliding in brittle-matrix composites during push-out and push-back tests. Mater Sci Eng A. 1998;250:169–177. doi:10.1016/S0921-5093(98)00589-9
  • Moosburger-Will J, Greisel M, Schulz M, et al. Investigation of the fiber-matrix interaction in carbon fiber-reinforced polyether ether ketone by cyclic single fiber push-out and push-back tests. Compos Interfaces. 2020;27:227–247. doi:10.1080/09276440.2019.1620542
  • Soutis C. Fibre reinforced composites in aircraft construction. Prog Aerosp Sci. 2005;41:143–151. doi:10.1016/j.paerosci.2005.02.004
  • DiBenedetto A. Measurement of the thermomechanical stability of interphases by the embedded single fiber test. Compos Sci Technol. 1991;42:103–123. doi:10.1016/0266-3538(91)90014-G
  • Graciani E, Balzquez A, Paris F, et al. Numerical analysis of the single fibre fragmentation test using cohesive elements. In: Proceedings of the 14th European Conference on Composite Materials; Budapest, Hungary; 2010.
  • Varandas LF, Arteiro A, Catalanotti G, et al. Micromechanical analysis of interlaminar crack propagation between angled plies in mode I tests. Compos Struct. 2019;220:827–841. doi:10.1016/j.compstruct.2019.04.050
  • Pimenta S, Pinho ST. An analytical model for the translaminar fracture toughness of fibre composites with stochastic quasi-fractal fracture surfaces. J Mech Phys Solids. 2014;66:78–102. doi:10.1016/j.jmps.2014.02.001
  • Reifsnider KL. Modelling of the interphase in polymer–matrix composite material systems. Composites. 1994;25:461–469. doi:10.1016/0010-4361(94)90170-8
  • Buxton A, Baillie C. A study of the influence of the environment on the measurement of interfacial properties of carbon fibre/epoxy resin composites. Composites. 1994;25:604–608. doi:10.1016/0010-4361(94)90190-2
  • Gaur U, Chou CT, Miller B. Effect of hydrothermal ageing on bond strength. Composites. 1994;25:609–612. doi:10.1016/0010-4361(94)90191-0
  • Schutte CL, McDonough W, Shioya M, et al. The use of a single-fibre fragmentation test to study environmental durability of interfaces/interphases between DGEBA/mPDA epoxy and glass fibre: the effect of moisture. Composites. 1994;25:617–624. doi:10.1016/0010-4361(94)90193-7
  • Garcea SC, Wang Y, Withers PJ. X-ray computed tomography of polymer composites. Compos Sci Technol. 2018;156:305–319. doi:10.1016/j.compscitech.2017.10.023
  • Melanitis N, Galiotis C, Tetlow PL, et al. Interfacial shear stress distribution in model composites: the effect of fibre modulus. Composites. 1993;24:459–466. doi:10.1016/0010-4361(93)90015-Z
  • Ma T, Liu L, Wang C. Interfacial shear strength of opaque resin/carbon fiber based on mapping from energy dispersive X-ray spectroscopy. Polym Composites. 2020;41:2134–2144. doi:10.1002/pc.25526
  • Qi G, Du S, Zhang B, et al. Evaluation of carbon fiber/epoxy interfacial strength in transverse fiber bundle composite: experiment and multiscale failure modeling. Compos Sci Technol. 2014;105:1–8. doi:10.1016/j.compscitech.2014.09.014
  • Qi G, Du S, Zhang B, et al. A new approach to assessing carbon fiber/epoxy interfacial shear strength by tensile test of 45° fiber bundle composites: experiment, modeling and applicability. Compos Sci Technol. 2016;129:214–221. doi:10.1016/j.compscitech.2016.04.032
  • Dilandro L, Dibenedetto AT, Groeger J. The effect of fiber-matrix stress transfer on the strength of fiber-reinforced composite materials. Polymer Composites. 1988;9:209–221. doi:10.1002/pc.750090308
  • Boura O, Diamanti EK, Grammatikos SA, et al. Carbon nanotube growth on high modulus carbon fibres: morphological and interfacial characterization. Surf Interface Anal. 2013;45:1372–1381. doi:10.1002/sia.5292
  • Lachman N, Carey BJ, Hashim DP, et al. Application of continuously-monitored single fiber fragmentation tests to carbon nanotube/carbon microfiber hybrid composites. Compos Sci Technol. 2012;72:1711–1717. doi:10.1016/j.compscitech.2012.06.004
  • Kim KJ, Kim J, Yu WR, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface. Carbon. 2013;54:258–267. doi:10.1016/j.carbon.2012.11.037
  • Kim T, Kameya M, Natori J, et al. Fabrication of CNTs grafted hierarchical multiscale composite and evaluation of its mechanical properties. In the Proceedings of the 16th European Conference on Composite Materials; Seville, Spain; 2014.
  • Anthony DB, Sui XM, Kellersztein I, et al. Continuous carbon nanotube synthesis on charged carbon fibers. Composites Part A. 2018;112:525–538. doi:10.1016/j.compositesa.2018.05.027
  • Qian H, Bismarck A, Greenhalgh ES, et al. Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Composites Part A. 2010;41:1107–1114. doi:10.1016/j.compositesa.2010.04.004
  • Zhou XF, Wagner HD, Nutt SR. Interfacial properties of polymer composites measured by push-out and fragmentation tests. Composites Part A. 2001;32:1543–1551. doi:10.1016/S1359-835X(01)00018-5
  • Ramirez FA, Carlsson LA. Modified single fiber fragmentation test procedure to study water degradation of the fiber/matrix interface toughness of glass/vinylester. J Mater Sci. 2009;44:3035–3042. doi:10.1007/s10853-009-3400-4
  • Mahato B, Babarinde VO, Abaimov SG, et al. Interface strength of glass fibers in polypropylene: dependence on the cooling rate and the degree of crystallinity. Polym Composites. 2020;41:1310–1322. doi:10.1002/pc.25456
  • Etcheverry M, Ferreira ML, Capiati NJ, et al. Strengthening of polypropylene-glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Composites Part A. 2008;39:1915–1923. doi:10.1016/j.compositesa.2008.09.018
  • Bogoeva-Gaceva G, Mäder E, Häußler L, et al. Parameters affecting the interface properties in carbon fibre/epoxy systems. Composites. 1995;26:103–107. doi:10.1016/0010-4361(95)90409-S
  • Miramini A, Kadkhodaei M, Alipour A, et al. Analysis of interfacial debonding in shape memory alloy wire-reinforced composites. Smart Mater Struct. 2016;25:015032. doi:10.1088/0964-1726/25/1/015032
  • Du X, Xu F, Liu H-Y, et al. Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low temperature flame growth of carbon nanotubes. RSC Adv. 2016;6:48896–48904. doi:10.1039/C6RA09839H
  • Pearson A, Liao W, Kazemi Y, et al. Fiber-matrix adhesion between high-density polyethylene and carbon fiber. Polym Test. 2022;105:107423. doi:10.1016/j.polymertesting.2021.107423
  • Zu M, Li Q, Zhu Y, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon. 2012;50:1271–1279. doi:10.1016/j.carbon.2011.10.047
  • An F, Lu C, Guo J, et al. Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite. Appl Surf Sci. 2011;258:1069–1076. doi:10.1016/j.apsusc.2011.09.003
  • An F, Lu C, Li Y, et al. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater Design. 2012;33:197–202. doi:10.1016/j.matdes.2011.07.027
  • Ren C, Gong Q, Guo L, et al. Analyses of reinforcing effects of in situ grown CNTs on carbon fibre fabric/epoxy composites at micro- and macroscale. Micro Nano Lett. 2012;7:240–243. doi:10.1049/mnl.2012.0065
  • Wang C, Li Y, Tong L, et al. The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites. Carbon. 2014;69:239–246. doi:10.1016/j.carbon.2013.12.020
  • Gao X, Jensen RE, Li W, et al. Effect of fiber surface texture created from silane blends on the strength and energy absorption of the glass fiber/epoxy interphase. J Compos Mater. 2008;42:513–534. doi:10.1177/0021998307086203
  • Haldar S, Herráez M, Naya F, et al. Relations between intralaminar micromechanisms and translaminar fracture behavior of unidirectional FRP supported by experimental micromechanics. Composites Part B. 2019;174:107000. doi:10.1016/j.compositesb.2019.107000
  • Naya F, Molina-Aldareguía JM, Lopes CS, et al. Interface characterization in fiber-reinforced polymer–matrix composites. JOM. 2017;69:13–21. doi:10.1007/s11837-016-2128-2
  • Xu T, Luo H, Xu Z, et al. Evaluation of the effect of thermal oxidation and moisture on the interfacial shear strength of unidirectional IM7/BMI composite by fiber push-in nanoindentation. Exp Mech. 2018;58:111–123. doi:10.1007/s11340-017-0335-6
  • Zhang L, De Greef N, Kalinka G, et al. Carbon nanotube-grafted carbon fiber polymer composites: damage characterization on the micro-scale. Composites Part B. 2017;126:202–210. doi:10.1016/j.compositesb.2017.06.004
  • Adams RD, Lloyd DH. Apparatus for measuring the torsional modulus and damping of single carbon fibres. J Phys E Sci Instrum. 1975;8:475–480. doi:10.1088/0022-3735/8/6/015
  • Adams RD. The dynamic longitudinal shear modulus and damping of carbon fibres. J Phys D Appl Phys. 1975;8:738–748. doi:10.1088/0022-3727/8/7/006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.