86
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of effect of post weld heat treatment on microhardness and microstructure of auto TIG welded stabilized SA213 TP347H weldments

ORCID Icon, ORCID Icon & ORCID Icon
Pages 366-382 | Received 16 Oct 2023, Accepted 28 Mar 2024, Published online: 19 Apr 2024

References

  • Pandey C, Mahapatra MM, Kumar P, et al. Softening mechanism of P91 steel weldments using heat treatments. Arch Civil Mech Eng. 2019;19(2):297–310. doi:10.1016/j.acme.2018.10.005
  • Kumar S, Pandey C, Goyal A. A microstructural and mechanical behavior study of heterogeneous P91 welded joint. Int J Press Vessels Pip. 2020;185:104128. doi:10.1016/j.ijpvp.2020.104128
  • Bhanu V, Fydrych D, Pandey SM, et al. Activated tungsten inert gas weld characteristics of P91 joint for advanced ultra supercritical power plant applications. J of Materi Eng and Perform. 2023. doi:10.1007/s11665-023-08814-4
  • Sirohi S, Kumar A, Pandey SM, et al. Dissimilar autogenous TIG joint of alloy 617 and AISI 304H steel for AUSC application. Heliyon. 2023;9(9):e19945. doi:10.1016/j.heliyon.2023.e19945
  • Bhanu V, Malakar A, Gupta A, et al. Electron beam welding of P91 steel and incoloy 800HT and their microstructural studies for advanced ultra super critical (AUSC) power plants. Int J Press Vessels Pip. 2023;205:105010. doi:10.1016/j.ijpvp.2023.105010
  • Dak G, Sirohi S, Pandey C. Study on microstructure and mechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel. Int J Press Vessels Pip. 2022;196:104629. doi:10.1016/j.ijpvp.2022.104629
  • Kumar A, Pandey C. Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and inconel 617 alloy: mechanism, microstructure, and mechanical properties. Archiv.Civ.Mech.Eng. 2022;22(1):39. doi:10.1007/s43452-021-00365-6
  • Gajjar PK, Khatri BC, Das Y, et al. Mechanical and intergranular corrosion properties of auto TIG welded TP347H-T91 dissimilar weldments. Mater Sci Technol. 2024;40(7):503–516. doi:10.1177/02670836231212612
  • Gajjar PK, Khatri BC, Siddhpura AM, et al. Sensitization and desensitization (healing) in austenitic stainless steel: a critical review. Trans Indian Inst Met. 2022;75(6):1411–1427. doi:10.1007/s12666-021-02439-8
  • Phillips JN, Wheeldon JM. Economic analysis of advanced ultra-supercritical pulverized coal power plants: A cost-effective CO2 emission reduction option. In Proceedings of the 6th International Conference on Advances in Materials Technology for Fossil Power Plants; 2010 Aug 31; Santa Fe, NM; 2010. p. 53–64.
  • Vaillant JC, Vandenberghe B, Hahn B, et al. T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants-properties and experience. Int J Press Vessels Pip. 2008;85(1-2):38–46. doi:10.1016/j.ijpvp.2007.06.011
  • DuPont JN. Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds. Int Mater Rev. 2012;57(4):208–234. doi:10.1179/1743280412Y.0000000006
  • Dupont JN, Lippold JC, Kiser SD. Welding metallurgy and weldability of nickel-base alloys. Hoboken (NJ): John Wiley & Sons, Inc.; 2009. doi:10.1002/9780470500262
  • Shrestha T, Basirat M, Alsagabi S, et al. Creep rupture behavior of welded grade 91 steel. Mater Sci Eng A. 2016;669:75–86. doi:10.1016/j.msea.2016.05.065
  • Kim JH, Kim BK, Kim DI, et al. The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700 °C for advanced thermal power plant applications. Corros Sci. 2015;96:52–66. doi:10.1016/j.corsci.2015.03.014
  • Rao PR, Kutumbarao VV. Developments in austenitic steels containing manganese. Int Mater Rev. 1989;34(1):69–92. doi:10.1179/imr.1989.34.1.69
  • Maziasz PJ. Developing an austenitic stainless steel for improved performance in advanced fossil power facilities. JOM. 1989;41(7):14–20. doi:10.1007/BF03220265
  • Oh YJ, Yoon JH, Hong JH. Carbon and nitrogen effects on sensitization resistance of type 347 stainless steels. Corrosion. 2000;56(3):289–297. doi:10.5006/1.3287657
  • Ghosh S, Rana VPS, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des. 2011;32(7):3823–3831. doi:10.1016/j.matdes.2011.03.012
  • Balk AHT, Boon JW, Etienne CF. Stress corrosion cracking in austenitic stainless steel fixings for façade panels. Br Corros J. 1974;9(1):4–9. doi:10.1179/000705974798321701
  • Truman JE. The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel. Corros Sci. 1977;17(9):737–746. doi:10.1016/0010-938X(77)90069-5
  • Lin S, Bao W, Gao J, et al. Intergranular corrosion of austenitic stainless steel. AMM. 2012;229-231:14–17. doi:10.4028/www.scientific.net/AMM.229-231.14
  • Khobragade NN, Khan MI, Patil AP. Corrosion behaviour of chrome-manganese austenitic stainless steels and AISI 304 stainless steel in chloride environment. Trans Indian Inst Met. 2014;67(2):263–273. doi:10.1007/s12666-013-0345-8
  • Taiwade RV, Patre SJ, Patil AP. Studies on welding and sensitization of chrome-manganese austenitic stainless steel. Trans Indian Inst Met. 2011;64(6):513–518. doi:10.1007/s12666-011-0077-6
  • Gellings PJ, de Jongh MA. Grain boundary oxidation and the chromium-depletion theory of intercrystalline corrosion of austenitic stainless steels. Corros Sci. 1967;7(7):413–421. doi:10.1016/s0010-938x(67)80054-4
  • Cragnolino G, Macdonald DD. Intergranular stress corrosion cracking of austenitic stainless steel at temperatures below 100 C—a review. Corrosion. 1982;38(8):406–424. doi:10.5006/1.3577354
  • Marrow TJ, Babout L, Jivkov AP, et al. Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel. J Nucl Mater. 2006;352(1-3):62–74. doi:10.1016/j.jnucmat.2006.02.042
  • Nishimura R. Characterization and perspective of stress corrosion cracking of austenitic stainless steels (type 304 and type 316) in acid solutions using constant load method. Corros Sci. 2007;49(1):81–91. doi:10.1016/j.corsci.2006.05.011
  • Prosek T, Gac AL, Thierry D, et al. Low temperature stress corrosion cracking of austenitic and duplex stainless steels under chloride deposits. Corrosion. 2014;70(10):1052–1063. doi:10.5006/1242
  • Reitz W. A Review of: “Welding Metallurgy and Weldability of Stainless Steel”: J. C. Lippold and D. J. Kotecki, John Wiley and Sons, Inc., 111 River Street, Hoboken, NJ, 07030, 2005, 360 pages, ISBN 0471473790. Mater Manuf Process. 2006;21(2):219. doi:10.1080/10426910500476747
  • ASME Section I. BPVC Section I-rules for construction of power boilers [Internet]. 2021. Available from: www.asme.org/cer.
  • Amininejad A, Jamaati R, Hosseinipour SJ. Influence of deformation and post-annealing treatment on the microstructure and mechanical properties of austenitic stainless steel. Trans Indian Inst Met. 2021;74(7):1799–1807. doi:10.1007/s12666-021-02277-8
  • Dayal RK, Parvathavarthini N, Raj B. Influence of metallurgical variables on sensitisation kinetics in austenitic stainless steels. Int Mater Rev. 2005;50(3):129–155. doi:10.1179/174328005X14348
  • Dak G, Pandey C. Study on effect of weld groove geometry on mechanical behavior and residual stresses variation in dissimilar welds of P92/SS304L steel for USC boilers. Archiv.Civ.Mech.Eng. 2022;22(3):140. doi:10.1007/s43452-022-00468-8
  • Akbari D, Farahani M, Soltani N. Effects of the weld groove shape and geometry on residual stresses in dissimilar butt-welded pipes. J Strain Anal Eng Des. 2012;47(2):73–82. doi:10.1177/0309324711434681
  • Singh M, Shahi AS, Singh D. Effect of weld groove volume on the mechanical and metallurgical performance of GTA welded martensitic stainless steel (AISI 410 SS) joints. Mater Today Proc. 2020;28:1580–1587. doi:10.1016/j.matpr.2020.04.844
  • Huysmans S, Vekeman J. Challenging weld repair of grade 91 tubing by avoiding PWHT. Energy Mater. 2009;4(2):76–83. doi:10.1179/174892310X12811032100033
  • Norsok Standard. Common requirements welding and inspection of piping. 1994. Available from: https://www.academia.edu/41371082/NORSOK_STANDARD_COMMON_REQUIREMENTS_WELDING_AND_INSPECTION_OF_PIPING.
  • Kaluç E. Effect of the purging gas on properties of 304H GTA welds [Internet]. 2015. Available from: https://www.researchgate.net/publication/279032035.
  • Dhaval A. Vartak DAV, Yogesh Ghotekar YG, B. Satyanarayana BS, et al. Embedment of carbon nanotubes in carbon fibre reinforced polymer for carrier plates in space payload. J Environ Nanotechnol. 2020;9(4):01–07. doi:10.13074/jent.2020.12.204421
  • Vartak D, Ghotekar Y, Munjal BS, et al. Characterization of tailored multi-walled carbon nanotubes based composite for Geo-Space payload components. J Electron Mater. 2021;50(8):4442–4449. doi:10.1007/s11664-021-08978-6
  • Pathan AM, Agrawal DH, Bhatt PM, et al. Design and construction of low temperature attachment for commercial AFM. Solid State Phenomena. 2013;209:137–142. doi:10.4028/www.scientific.net/SSP.209.137
  • Agarwal DH, Bhatt PM, Pathan AM, et al. Development of portable experimental set-up for AFM to work at cryogenic temperature. Solid State Physics. AIP Conf. Proc. 2012;1447:531–532. doi:10.1063/1.4710113
  • ASME Section V. BPVC Section V-nondestructive examination [Internet]. 2021. Available from: www.asme.org/cer.
  • ASME Section IX. BPVC Section IX-welding, brazing, and fusing qualifications [Internet]. 2021. Available from: www.asme.org/cer.
  • Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res Int. 2019;90:1900153. doi:10.1002/srin.201900153
  • Llewellyn DT. Work hardening effects in austenitic stainless steels. Mater. Sci. Technol. 1997;13(5):389–400. doi:10.1179/mst.1997.13.5.389
  • Gardner L. The use of stainless steel in structures. Progr Struct Eng Maths. 2005;7(2):45–55. doi:10.1002/pse.190
  • Unnikrishnan R, Idury KSNS, Ismail TP, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304l austenitic stainless steel weldments. Mater Charact. 2014;93:10–23. doi:10.1016/j.matchar.2014.03.013
  • Lu J, Hultman L, Holmström E, et al. Stacking fault energies in austenitic stainless steels. Acta Mater. 2016;111:39–46. doi:10.1016/j.actamat.2016.03.042
  • Song GS, Ji KS, Song HW, et al. Microstructure transformation and twinning mechanism of 304 stainless steel tube during hydraulic bulging. Mater Res Express. 2019;6(12):1265h9. doi:10.1088/2053-1591/ab5375
  • Kina AY, Souza VM, Tavares SSM, et al. Influence of heat treatments on the intergranular corrosion resistance of the AISI 347 cast and weld metal for high temperature services. J Mater Process Technol. 2008;199(1-3):391–395. doi:10.1016/j.jmatprotec.2007.08.011
  • Lima A, Nascimento A, Abreu H, et al. Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347. J Mater Sci. 2005;40:139–144. doi:10.1007/s10853-005-5699-9
  • Gill TPS, Vijayalkshmi M, Rodriguez P, et al. On microstructure-property correlation of thermally aged type 316L stainless steel weld metal. Metall Trans. 1989;A20:1115–1124. doi:10.1007/BF02650146
  • Zhang X, Li D, Li Y, et al. Effect of aging treatment on the microstructures and mechanical properties evolution of 25Cr-20Ni austenitic stainless steel weldments with different Nb contents. J Mater Sci Technol. 2019;35(4):520–529. doi:10.1016/j.jmst.2018.10.017
  • Ibrahim OH, Ibrahim IS, Khalifa TAF. Effect of aging on the toughness of austenitic and duplex stainless steel weldments. J Mater Sci Technol. 2010;26(9):810–816. doi:10.1016/S1005-0302(10)60129-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.