259
Views
0
CrossRef citations to date
0
Altmetric
Special Review Series

Live imaging of single platelets at work

, &
Pages 551-558 | Received 09 Oct 2019, Accepted 06 Dec 2019, Published online: 27 Dec 2019

References

  • Sadoul K. New explanations for old observations: marginal band coiling during platelet activation. J Thromb Haemost 2015;13:333–346. doi:10.1111/jth.2015.13.issue-3
  • Calaminus SD, Thomas S, McCarty OJ, Machesky LM, Watson SP. Identification of a novel, actin-rich structure, the actin nodule, in the early stages of platelet spreading. J Thromb Haemost 2008;6:1944–1952. Epub 2008/ 09/03. doi:10.1111/jth.2008.6.issue-11
  • Poulter NS, Pollitt AY, Davies A, Malinova D, Nash GB, Hannon MJ, Pikramenou Z, Rappoport JZ, Hartwig JH, Owen DM, et al. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat Commun 2015;6:7254. doi:10.1038/ncomms8254
  • Schachtner H, Calaminus SD, Sinclair A, Monypenny J, Blundell MP, Leon C, Holyoake TL, Thrasher AJ, Michie AM, Vukovic M, et al. Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood 2013;121:2542–2552. doi:10.1182/blood-2012-07-443457
  • Urban AE, Quick EO, Miller KP, Krcmery J, Simon HG. Pdlim7 regulates Arf6-dependent actin dynamics and is required for platelet-mediated thrombosis in Mice. PLoS One 2016;11:e0164042. doi:10.1371/journal.pone.0164042
  • Pollitt AY, Poulter NS, Gitz E, Navarro-Nunez L, Wang YJ, Hughes CE, Thomas SG, Nieswandt B, Douglas MR, Owen DM, et al. Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem 2014;289:35695–35710. doi:10.1074/jbc.M114.584284
  • Mahaut Smith MP, Evans RJ, Vial C. Development of a P2X1-eYFP receptor knock-in mouse to track receptors in real time. Purinergic Signal 2019;15:397–402. doi:10.1007/s11302-019-09666-1
  • Gaertner F, Ahmad Z, Rosenberger G, Fan S, Nicolai L, Busch B, Yavuz G, Luckner M, Ishikawa-Ankerhold H, Hennel R, et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 2017;171:1368–1382 e1323. doi:10.1016/j.cell.2017.11.001
  • Hiratsuka T, Sano T, Kato H, Komatsu N, Imajo M, Kamioka Y, Sumiyama K, Banno F, Miyata T, Matsuda M. Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Forster resonance energy transfer. J Thromb Haemost 2017;15:1487–1499. doi:10.1111/jth.13723
  • Demeautis C, Sipieter F, Roul J, Chapuis C, Padilla-Parra S, Riquet FB, Tramier M. Multiplexing PKA and ERK1&2 kinases FRET biosensors in living cells using single excitation wavelength dual colour FLIM. Sci Rep 2017;7:41026. doi:10.1038/srep41026
  • Deng S, Chen J, Gao Z, Fan C, Yan Q, Wang Y. Effects of donor and acceptor’s fluorescence lifetimes on the method of applying Forster resonance energy transfer in STED microscopy. J Microsc 2018;269:59–65. doi:10.1111/jmi.12608
  • Patel-Hett S, Richardson JL, Schulze H, Drabek K, Isaac NA, Hoffmeister K, Shivdasani RA, Bulinski JC, Galjart N, Hartwig JH, et al. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood 2008;111:4605–4616. Epub 2008/ 01/31. doi:10.1182/blood-2007-10-118844
  • Behnke O, Zelander T. Substructure in negatively stained microtubules of mammalian blood platelets. Exp Cell Res 1966;43:236–239. doi:10.1016/0014-4827(66)90401-0
  • Kenney DM, Linck RW. The cystoskeleton of unstimulated blood platelets: structure and composition of the isolated marginal microtubular band. J Cell Sci 1985;78:1–22. Epub 1985/ 10/01.
  • Johnson GJ, Leis LA, Krumwiede MD, White JG. The critical role of myosin IIA in platelet internal contraction. J Thromb Haemost 2007;5:1516–1529. Epub 2007/ 05/10. doi:10.1111/jth.2007.5.issue-7
  • Severin S, Gaits-Iacovoni F, Allart S, Gratacap MP, Payrastre B. A confocal-based morphometric analysis shows a functional crosstalk between the actin filament system and microtubules in thrombin-stimulated platelets. J Thromb Haemost 2013;11:183–186. Epub 2012/ 11/06. doi:10.1111/jth.12053
  • White JG, Burris SM. Morphometry of platelet internal contraction. Am J Pathol 1984;115:412–417. Epub 1984/ 06/01.
  • Diagouraga B, Grichine A, Fertin A, Wang J, Khochbin S, Sadoul K. Motor-driven marginal band coiling promotes cell shape change during platelet activation. J Cell Biol 2014;204:177–185. Epub 2014/ 01/15. doi:10.1083/jcb.201306085
  • Lukinavicius G, Reymond L, D’Este E, Masharina A, Gottfert F, Ta H, Guther A, Fournier M, Rizzo S, Waldmann H, et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 2014;11:731–733. doi:10.1038/nmeth.2972
  • Paknikar AK, Eltzner B, Koster S. Direct characterization of cytoskeletal reorganization during blood platelet spreading. Prog Biophys Mol Biol 2019;144:166–176.
  • Cardo L, Thomas SG, Mazharian A, Pikramenou Z, Rappoport JZ, Hannon MJ, Watson SP. Accessible synthetic probes for staining actin inside platelets and megakaryocytes by employing lifeact peptide. Chembiochem 2015;16:1680–1688. doi:10.1002/cbic.201500120
  • Kim OV, Litvinov RI, Alber MS, Weisel JW. Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat Commun 2017;8:1274. doi:10.1038/s41467-017-00885-x
  • Kita A, Sakurai Y, Myers DR, Rounsevell R, Huang JN, Seok TJ, Yu K, Wu MC, Fletcher DA, Lam WA. Microenvironmental geometry guides platelet adhesion and spreading: a quantitative analysis at the single cell level. PLoS One 2011;6:e26437. Epub 2011/ 10/27. doi:10.1371/journal.pone.0026437
  • Sandmann R, Koster S. Topographic cues reveal two distinct spreading mechanisms in blood platelets. Sci Rep 2016;6:22357. doi:10.1038/srep22357
  • Lam WA, Chaudhuri O, Crow A, Webster KD, Li TD, Kita A, Huang J, Fletcher DA. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 2011;10:61–66. Epub 2010/ 12/07. doi:10.1038/nmat2903
  • Hanke J, Probst D, Zemel A, Schwarz US, Koster S. Dynamics of force generation by spreading platelets. Soft Matter 2018;14:6571–6581. doi:10.1039/C8SM00895G
  • Schwarz Henriques S, Sandmann R, Strate A, Koster S. Force field evolution during human blood platelet activation. J Cell Sci 2012;125:3914–3920. Epub 2012/ 05/15. doi:10.1242/jcs.108126
  • Obydennyy SI, Sveshnikova AN, Ataullakhanov FI, Panteleev MA. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J Thromb Haemost 2016;14:1867–1881. doi:10.1111/jth.13395
  • Agbani EO, van den Bosch MT, Brown E, Williams CM, Mattheij NJ, Cosemans JM, Collins PW, Heemskerk JW, Hers I, Poole AW. Coordinated membrane ballooning and procoagulant spreading in human platelets. Circulation 2015;132:1414–1424. doi:10.1161/CIRCULATIONAHA.114.015036
  • Agbani EO, Williams CM, Hers I, Poole AW. Membrane ballooning in aggregated platelets is synchronised and mediates a surge in microvesiculation. Sci Rep 2017;7:2770. doi:10.1038/s41598-017-02933-4
  • Haining EJ, Matthews AL, Noy PJ, Romanska HM, Harris HJ, Pike J, Morowski M, Gavin RL, Yang J, Milhiet PE, et al. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets 2017;28:629–642. doi:10.1080/09537104.2016.1254175
  • Zhang Y, Qiu Y, Blanchard AT, Chang Y, Brockman JM, Ma VP, Lam WA, Salaita K. Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation. Proc Natl Acad Sci U S A 2018;115:325–330. doi:10.1073/pnas.1710828115
  • Allen RD, Zacharski LR, Widirstky ST, Rosenstein R, Zaitlin LM, Burgess DR. Transformation and motility of human platelets: details of the shape change and release reaction observed by optical and electron microscopy. J Cell Biol 1979;83:126–142. Epub 1979/ 10/01. doi:10.1083/jcb.83.1.126
  • McCarty OJ, Larson MK, Auger JM, Kalia N, Atkinson BT, Pearce AC, Ruf S, Henderson RB, Tybulewicz VL, Machesky LM, et al. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem 2005;280:39474–39484. Epub 2005/ 10/01. doi:10.1074/jbc.M504672200
  • Wonerow P, Pearce AC, Vaux DJ, Watson SP. A critical role for phospholipase Cgamma2 in alphaIIbbeta3-mediated platelet spreading. J Biol Chem 2003;278:37520–37529. Epub 2003/ 07/02. doi:10.1074/jbc.M305077200
  • Seifert J, Rheinlaender J, Lang F, Gawaz M, Schaffer TE. Thrombin-induced cytoskeleton dynamics in spread human platelets observed with fast scanning ion conductance microscopy. Sci Rep 2017;7:4810. doi:10.1038/s41598-017-04999-6
  • Rheinlaender J, Vogel S, Seifert J, Schachtele M, Borst O, Lang F, Gawaz M, Schaffer TE. Imaging the elastic modulus of human platelets during thrombin-induced activation using scanning ion conductance microscopy. Thromb Haemost 2015;113:305–311. doi:10.1160/TH14-05-0414
  • Liu X, Li Y, Zhu H, Zhao Z, Zhou Y, Zaske AM, Liu L, Li M, Lu H, Liu W, et al. Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets. Platelets 2015;26:480–485. doi:10.3109/09537104.2014.940888
  • Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 2009;6:279–281. doi:10.1038/nmeth.1306
  • Kraus MJ, Seifert J, Strasser EF, Gawaz M, Schaffer TE, Rheinlaender J. Comparative morphology analysis of live blood platelets using scanning ion conductance and robotic dark-field microscopy. Platelets 2016;27:541–546. doi:10.3109/09537104.2016.1158400
  • Sobieranski AC, Inci F, Tekin HC, Yuksekkaya M, Comunello E, Cobra D, von Wangenheim A, Demirci U. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light Sci Appl 2015;4:e346–e346. doi:10.1038/lsa.2015.119
  • Boudejltia KZ, Ribeiro de Sousa D, Uzureau P, Yourassowsky C, Perez-Morga D, Courbebaisse G, Chopard B, Dubois F. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy. Biomed Opt Express 2015;6:3556–3563. doi:10.1364/BOE.6.003556
  • Donati A, Gupta S, Reviakine I. Subpopulations in purified platelets adhering on glass. Biointerphases 2016;11:029811. doi:10.1116/1.4953866
  • Yakimenko AO, Verholomova FY, Kotova YN, Ataullakhanov FI, Panteleev MA. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys J 2012;102:2261–2269. doi:10.1016/j.bpj.2012.04.004
  • Sodergren AL, Ramstrom S. Platelet subpopulations remain despite strong dual agonist stimulation and can be characterised using a novel six-colour flow cytometry protocol. Sci Rep 2018;8:1441. doi:10.1038/s41598-017-19126-8
  • Lesyk GM, Jurasz P. Identification of eNOS-based megakaryocyte subpopulations and their pharmacological characterization by IFNγ and IL-10. Faseb J 2018;32:lb598–lb598.
  • Radziwon-Balicka A, Lesyk G, Back V, Fong T, Loredo-Calderon EL, Dong B, El-Sikhry H, El-Sherbeni AA, El-Kadi A, Ogg S, et al. Differential eNOS-signalling by platelet subpopulations regulates adhesion and aggregation. Cardiovasc Res 2017;113:1719–1731. doi:10.1093/cvr/cvx179
  • Behnke O, Forer A. Blood platelet heterogeneity: evidence for two classes of platelets in man and rat. Br J Haematol 1993;84:686–693. Epub 1993/ 08/01. doi:10.1111/j.1365-2141.1993.tb03147.x
  • Crocker JC, Hoffman BD. Multiple-particle tracking and two-point microrheology in cells. Methods Cell Biol 2007;83:141–178.
  • Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA 3rd, Liu Z, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014;346:1257998. doi:10.1126/science.1257998
  • Galland R, Grenci G, Aravind A, Viasnoff V, Studer V, Sibarita JB. 3D high- and super-resolution imaging using single-objective SPIM. Nat Methods 2015;12:641–644. doi:10.1038/nmeth.3402
  • Li Y, Xia X, Paulus YM. Advances in Retinal Optical Imaging. Photonics 2018;5:9. doi:10.3390/photonics5020009
  • Berdeu A, Laperrousaz B, Bordy T, Mandula O, Morales S, Gidrol X, Picollet-D’hahan N, Allier C. Lens-free microscopy for 3D + time acquisitions of 3D cell culture. Sci Rep 2018;8:16135. doi:10.1038/s41598-018-34253-6
  • Waldchen S, Lehmann J, Klein T, van de Linde S, Sauer M. Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 2015;5:15348. doi:10.1038/srep15348
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008;130:98–106. Epub 2008/ 06/07. doi:10.1016/j.jconrel.2008.04.013
  • Zhang Z, al-Rubeai M, Thomas CR. Effect of Pluronic F-68 on the mechanical properties of mammalian cells. Enzyme Microb Technol 1992;14:980–983. doi:10.1016/0141-0229(92)90081-X
  • Melak M, Plessner M, Grosse R. Actin visualization at a glance. J Cell Sci 2017;130:525–530. doi:10.1242/jcs.189068
  • Weigert M, Schmidt U, Boothe T, Muller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S, et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 2018;15:1090–1097. doi:10.1038/s41592-018-0216-7
  • Newby JM, Schaefer AM, Lee PT, Forest MG, Lai SK. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proc Natl Acad Sci U S A 2018;115:9026–9031. doi:10.1073/pnas.1804420115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.