25,404
Views
12
CrossRef citations to date
0
Altmetric
Review

Bovine colostrum: benefits for the human respiratory system and potential contributions for clinical management of COVID-19

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 143-162 | Received 20 Dec 2020, Accepted 15 Feb 2021, Published online: 03 Mar 2021

References

  • Abd El -Fattah, A. M., Abd Rabo, F. H. R., EL-Dieb, S. M., & Elkashef, H. A. S. (2012). Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Veterinary Research, 8, 19. https://doi.org/10.1186/1746-6148-8-19
  • Bagwe, S., Tharappel, L. J. P., Kaur, G., & Buttar, H. S. (2015). Bovine colostrum: An emerging nutraceutical. Journal of Complementary and Integrative Medicine, 12(3), 1–11. https://doi.org/10.1515/jcim-2014-0039
  • Brinkworth, G. D., & Buckley, J. D. (2003). Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. European Journal of Nutrition, 42(4), 228–232. https://doi.org/10.1007/s00394-003-0410-x
  • Buckley, J. D., Abbott, M. J., Brinkworth, G. D., & Whyte, P. B. D. (2002). Bovine colostrum supplementation during endurance running training improves recovery, but not performance. Journal of Science and Medicine in Sport, 5(2), 65–79. https://doi.org/10.1016/S1440-2440(02)80028-7
  • Buttar, H. S., Bagwe, S. M., Bhullar, S. K., & Kaur, G. (2017). Health benefits of bovine colostrum in children and adults. In R. R. Watson, R. J. Collier, & V. R. Preedy (Eds.), Dairy in human health and disease across the lifespan (pp. 3–20). Academic Press. https://doi.org/10.1016/B978-0-12-809868-4.00001-7.
  • Carvalho, C. A. M., Casseb, S. M. M., Gonçalves, R. B., Silva, E. V. P., Gomes, A. M. O., & Vasconcelos, P. F. C. (2017). Bovine lactoferrin activity against chikungunya and zika viruses. Journal of General Virology, 98(7), 1749–1754. https://doi.org/10.1099/jgv.0.000849
  • Carvalho, C. A. M., Matos, A. R., Caetano, B. C., Sousa Junior, I. P., Campos, S. P. C., & Geraldino, B. R. (2020, preprint). In vitro inhibition of SARS-CoV-2 infection by bovine lactoferrin. bioRxiv preprint. Available from: https://www.biorxiv.org/content/10.1101/2020.05.13.093781v1
  • Casswall, T. H., Nilsson, H. O., Björck, L., Sjöstedt, S., Xu, L., Nord, C. E., Borén, T., Wadstrom, T., & Hammarström, L. (2002). Bovine anti-helicobacter pylori antibodies for oral immunotherapy. Scandinavian Journal of Gastroenterology, 37(12), 1380–1385. https://doi.org/10.1080/003655202762671242
  • Cesarone, M. R., Belcaro, G., Di Renzo, A., Dugall, M., Cacchio, M., Ruffini, I., Pellegrini, L., Boccio, G. D., Fano, F., Ledda, A., Bottari, A., Ricci, A., Stuard, S., & Vinciguerra, G. (2007). Prevention of influenza episodes with colostrum compared with vaccination in healthy and high-risk cardiovascular subjects: The epidemiologic study in San Valentino. Clinical and Applied Thrombosis/Hemostasis, 13(2), 130–136. https://doi.org/10.1177/1076029606295957
  • Chang, R., Ng, T. B., & Sun, W.-Z. (2020). Lactoferrin as potential preventative and adjunct treatment for COVID-19. International Journal of Antimicrobial Agents, 56(3), 1–7. https://doi.org/10.1016/j.ijantimicag.2020.106118
  • Civra, A., Altomare, A., Francese, R., Donalisio, M., Aldini, G., & Lembo, D. (2019). Colostrum from cows immunized with a veterinary vaccine against bovine rotavirus displays enhanced in vitro anti-human rotavirus activity. Journal of Dairy Science, 102(6), 4857–4869. https://doi.org/10.3168/jds.2018-16016
  • Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., & Kritas, S. K. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19: Anti-inflammatory strategies., 34, 11–15. https://doi.org/10.23812/conti-e
  • Crooks, C., Cross, M. L., Wall, C., & Ali, A. (2010). Effect of bovine colostrum supplementation on respiratory tract mucosal defenses in swimmers. International Journal of Sport Nutrition and Exercise Metabolism, 20(3), 224–235. https://doi.org/10.1123/ijsnem.20.3.224
  • Crooks, C. V., Wall, C. R., Cross, M. L., & Rutherfurd-Markwick, K. J. (2006). The effect of bovine colostrum supplementation on salivary IgA in distance runners. International Journal of Sport Nutrition and Exercise Metabolism, 16(1), 47–64. https://doi.org/10.1123/ijsnem.16.1.47
  • Das, A., & Seth, R. (2017). Studies on quality attributes of skimmed colostrum powder. International Journal of Chemical Studies, 5(3), 17–20.
  • Davison, G. (2013). Bovine colostrum and immune function after exercise. Medicine Sport Science, 59, 62–69. https://doi.org/10.1159/000341966
  • Davison, G., & Diment, B. C. (2010). Bovine colostrum supplementation attenuates the decrease of salivary lysozyme and enhances the recovery of neutrophil function after prolonged exercise. British Journal of Nutrition, 103(10), 1425–1432. https://doi.org/10.1017/S0007114509993503
  • De Alwis, R., Chen, S., Gan, E. S., & Ooi, E. E. (2020). Impact of immune enhancement on COVID-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine, 55, 1–7. https://doi.org/10.1016/j.ebiom.2020.102768
  • Dzik, S., Miciński, B., Miciński, J., Mituniewicz, T., & Kowalski, P. M. (2018). Therapeutic properties of lactoferrin. Polish Annals of Medicine, 25, 158–161. https://doi.org/10.29089/2017.17.00020
  • Fox, A., Marino, J., Amanat, F., Krammer, F., Hahn-Holbrook, J., Zolla-Pazner, S., & Powell, R. L. (2020, preprint). Evidence of a significant secretory-IgA-dominant SARS-CoV-2 immune response in human milk following recovery from COVID-19. medRxiv preprint doi: https://doi.org/10.1101/2020.05.04.20089995. Available from: https://www.medrxiv.org/content/10 .1101/2020.05.04.20089995v1
  • Ge, H., Wang, X., Yuan, X., Xiao, G., Wang, C., Deng, T., Yuan, Q., & Xiao, X. (2020). The epidemiology and clinical information about COVID-19. European Journal of Clinical Microbiology & Infectious Diseases, 39(6), 1011–1019. https://doi.org/10.1007/s10096-020-03874-z
  • Gleeson, M., & Pyne, D. B. (2016). Respiratory inflammation and infections in high-performance athletes. Immunology & Cell Biology, 94(2), 124–131. https://doi.org/10.1038/icb.2015.100
  • Glówka, N., Durkalec-Michalski, K., & Woźniewicz, M. (2020). Immunological outcomes of bovine colostrum supplementation in trained and physically active people: A systematic review and meta-analysis. Nutrients, 12(4), 1–24. https://doi.org/10.3390/nu12041023
  • Godhia, M. L., & Patel, N. (2013). Colostrum - Its composition, benefits as a nutraceutical: A review. Current Research in Nutrition and Food Science Journal, 1(1), 37–47. https://doi.org/10.12944/CRNFSJ.1.1.04
  • Grief, S. N. (2013). Upper respiratory infections. Primary Care: Clinics in Office Practice, 40(3), 757–770. https://doi.org/10.1016/j.pop.2013.06.004
  • Hansen, G., McIntire, J. J., Yeung, V. P., Berry, G., Thorbecke, G. J., Chen, L., Deekruyff, R. H., & Umetsu, D. T. (2000). CD4+ t helper cells engineered to produce latent TGF-β1 reverse allergen-induced airway hyperreactivity and inflammation. Journal of Clinical Investigation, 105(1), 61–70. https://doi.org/10.1172/JCI7589
  • Hung, L. H., Wu, C. H., Lin, B. F., & Hwang, L. S. (2018). Hyperimmune colostrum alleviates rheumatoid arthritis in a collagen-induced arthritis murine model. Journal of Dairy Science, 101(5), 3778–3787. https://doi.org/10.3168/jds.2017-13572
  • Hutton, M. L., Cunningham, B. A., Mackin, K. E., Lyon, S. A., James, M. L., Rood, J. I., & Lyras, D. (2017). Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-03982-5
  • Ihara, S., Hirata, Y., & Koike, K. (2017). TGF-β in inflammatory bowel disease: A key regulator of immune cells, epithelium, and the intestinal microbiota. Journal of Gastroenterology, 52(7), 777–787. https://doi.org/10.1007/s00535-017-1350-1
  • Jawhara, S. (2020). Can drinking microfiltered raw immune milk from cows immunized against SARS-CoV-2 provide short-term protection against COVID-19? Frontiers in Immunology, 11, 1–5. https://doi.org/10.3389/fimmu.2020.01888
  • Jones, A. W., Cameron, S. J. S., Thatcher, R., Beecroft, M. S., Mur, L. A. J., & Davison, G. (2014). Effects of bovine colostrum supplementation on upper respiratory illness in active males. Brain, Behavior, and Immunity, 39, 194–203. https://doi.org/10.1016/j.bbi.2013.10.032
  • Jones, A. W., March, D. S., Curtis, F., & Bridle, C. (2016). Bovine colostrum supplementation and upper respiratory symptoms during exercise training: A systematic review and meta-analysis of randomised controlled trials. BMC Sports Science, Medicine and Rehabilitation, 8(1), 1–10. https://doi.org/10.1186/s13102-016-0047-8
  • Jones, A. W., March, D. S., Thatcher, R., Diment, B., Walsh, N. P., & Davison, G. (2019). The effects of bovine colostrum supplementation on in vivo immunity following prolonged exercise: A randomised controlled trial. European Journal of Nutrition, 58(1), 335–344. https://doi.org/10.1007/s00394-017-1597-6
  • Jones, A. W., Thatcher, R., March, D. S., & Davison, G. (2015). Influence of 4 weeks of bovine colostrum supplementation on neutrophil and mucosal immune responses to prolonged cycling. Scandinavian Journal of Medicine & Science in Sports, 25(6), 788–796. https://doi.org/10.1111/sms.12433
  • Jones, A. W., Thatcher, R., Mur, L. A. J., Cameron, S. J. S., Beecroft, M., & Davison, G. (2013). Exploring the mechanisms behind the effects of chronic bovine colostrum supplementation on risk of upper respiratory tract infection. International Journal of Exercise Science, 10(1), ISSN 1939-795X. Available from: https://digitalcommons.wku.edu/ijesab/vol10/iss1/11.
  • Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that Can help defend against viruses and bacteria. Frontiers in Immunology, 11, 1–15. https://doi.org/10.3389/fimmu.2020.01221
  • Kelly, A., Houston, S. A., Sherwood, E., Casulli, J., & Travis, M. A. (2017). Regulation of innate and adaptive immunity by TGFβ. Advances in Immunology, 134, 137–233. https://doi.org/10.1016/bs.ai.2017.01.001
  • Korhonen, H. J. (2013). Production and properties of health-promoting proteins and peptides from bovine colostrum and milk. Cell Mol Biol (Noisy-le-grand), 58(1), 26–38. https://doi.org/10.1170/T915
  • Krammer, F., Smith, G. J. D., Fouchier, R. A. M., Peiris, M., Kedzierska, K., Doherty, P. C., Palese, P., Shaw, M. L., Treanor, J., Webster, R. G., & García-Sastre, A. (2018). Influenza. Nature Reviews Disease Primers, 4(1), 1–2. https://doi.org/10.1038/s41572-018-0002-y
  • Kramski, M., Center, R. J., Wheatley, A. K., Jacobson, J. C., Alexander, M. R., Rawlin, G., & Purcell, D. F. J. (2012a). Hyperimmune bovine colostrum as a low-cost, large-scale source of antibodies with broad neutralizing activity for HIV-1 envelope with potential use in microbicides. Antimicrobial Agents and Chemotherapy, 56(8), 4310–4319. https://doi.org/10.1128/AAC.00453-12
  • Kramski, M., Lichtfuss, G. F., Navis, M., Isitman, G., Wren, L., Rawlin, G., Center, R. J., Jaworowski, A., Kent, S. J., & Purcell, D. F. J. (2012b). Anti-HIV-1 antibody-dependent cellular cytotoxicity mediated by hyperimmune bovine colostrum IgG. European Journal of Immunology, 42(10), 2771–2781. https://doi.org/10.1002/eji.201242469
  • Kruzel, M. L., Zimecki, M., & Actor, J. K. (2017). Lactoferrin in a context of inflammation-induced pathology. Frontiers in Immunology, 8, 1–15. https://doi.org/10.3389/fimmu.2017.01438
  • Larcombe, S., Hutton, M. L., & Lyras, D. (2019). Hyperimmune bovine colostrum reduces gastrointestinal carriage of uropathogenic Escherichia coli. Human Vaccines & Immunotherapeutics, 15(2), 508–513. https://doi.org/10.1080/21645515.2018.1528836
  • Maijó, M., Miró, L., Polo, J., Campbell, J., Russell, L., Crenshaw, J., Weaver, E., Moretó, M., & Pérez-Bosque, A. (2012a). Dietary plasma proteins attenuate the innate immunity response in a mouse model of acute lung injury. British Journal of Nutrition, 107(6), 867–875. https://doi.org/10.1017/S0007114511003655
  • Maijó, M., Miró, L., Polo, J., Campbell, J., Russell, L., Crenshaw, J., Weaver, E., Moretó, M., & Pérez-Bosque, A. (2012b). Dietary plasma proteins modulate the adaptive immune response in mice with acute lung inflammation. The Journal of Nutrition, 142(2), 264–270. https://doi.org/10.3945/jn.111.149070
  • Marnila, P., & Korhonen, H. (2011). Milk: Colostrum. Encyclopedia of Dairy Sciences, 2, 591–597. https://doi.org/10.1016/B978-0-12-374407-4.00322-8
  • McGrath, B. A., Fox, P. F., McSweeney, P. L. H., & Kelly, A. L. (2016). Composition and properties of bovine colostrum: A review. Dairy Science & Technology, 96(2), 133–158. https://doi.org/10.1007/s13594-015-0258-x
  • Mosconi, E., Rekima, A., Seitz-Polski, B., Kanda, A., Fleury, S., Tissandie, E., Monteiro, R., Dombrowicz, D. D., Julia, V., Glaichenhaus, N., & Verhasselt, V. (2010). Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunology, 3(5), 461–474. https://doi.org/10.1038/mi.2010.23
  • Ng, W. C., Wong, V., Muller, B., Rawlin, G., & Brown, L. E. (2010). Prevention and treatment of influenza with hyperimmune bovine colostrum antibody. PLoS One, 5, 1–10. https://doi.org/10.1371/journal.pone.0013622
  • Nigro, A., Nicastro, A., & Trodella, R. (2014). Retrospective observational study to investigate sinerga, a multifactorial nutritional product, and bacterial extracts in the prevention of recurrent respiratory infections in children. International Journal of Immunopathology and Pharmacology, 27(3), 455–460. https://doi.org/10.1177/039463201402700318
  • Oddy, W. H., & Mcmahon, R. J. (2011). Milk-derived or recombinant transforming growth factor-beta has effects on immunological outcomes: A review of evidence from animal experimental studies. Clinical & Experimental Allergy, 41(6), 783–793. https://doi.org/10.1111/j.1365-2222.2011.03762.x
  • Oddy, W. H., & Rosales, F. (2010). A systematic review of the importance of milk TGF-β on immunological outcomes in the infant and young child. Pediatric Allergy and Immunology, 21(1-Part-I), 47–59. https://doi.org/10.1111/j.1399-3038.2009.00913.x
  • Oloroso-Chavez, K., Andaya, P., & Wong, C. (2017). OR082 bovine colostrum supplementation in respiratory allergies according to sensitization: Subgroup analysis of randomized controlled trial. Annals of Allergy, Asthma & Immunology, 119(5), S11–S12. https://doi.org/10.1016/j.anai.2017.08.062
  • Otto, W., Najnigier, B., Stelmasiak, T., & Robins-Browne, R. M. (2011). Randomized control trials using a tablet formulation of hyperimmune bovine colostrum to prevent diarrhea caused by enterotoxigenic Escherichia coli in volunteers. Scandinavian Journal of Gastroenterology, 46(7-8), 862–868. https://doi.org/10.3109/00365521.2011.574726
  • Patel, K., & Rana, R. (2006). Pedimune in recurrent respiratory infection and diarrhoea- The Indian experience-the pride study. The Indian Journal of Pediatrics, 73(7), 585–591. https://doi.org/10.1007/BF02759923
  • Patiroǧlu, T., & Kondolot, M. (2013). The effect of bovine colostrum on viral upper respiratory tract infections in children with immunoglobulin A deficiency. The Clinical Respiratory Journal, 7(1), 21–26. https://doi.org/10.1111/j.1752-699X.2011.00268.x
  • Perdijk, O., van Splunter, M., Savelkoul, H. F. J., Brugman, S., & van Neerven, R. J. J. (2018). Cow’s milk and immune function in the respiratory tract: Potential mechanisms. Frontiers in Immunology, 9, 1–14. https://doi.org/10.3389/fimmu.2018.00143
  • Ramesh Menon, P., Lodha, R., & Kabra, S. K. (2010). Bovine colostrum in pediatric respiratory diseases: A systematic review. The Indian Journal of Pediatrics, 77(1), 108–109. https://doi.org/10.1007/s12098-009-0257-0
  • Rossey, I., Sedeyn, K., De Baets, S., Schepens, B., & Saelens, X. (2014). CD8+ t cell immunity against human respiratory syncytial virus. Vaccine, 32(46), 6130–6137. https://doi.org/10.1016/j.vaccine.2014.08.063
  • Saad, K., Abo-Elela, M. G. M., El-Baseer, K. A. A., Ahmed, A. E., Ahmad, F. A., Tawfeek, M. S. K., El-Houfey, A., About_Khair, M. D., Abdel-Salam, A. M., Abo-elgheit, A., Qubaisy H., Ali A. M., & Abdel-Mawgoud E. (2016). Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine, 95, 1–5. https://doi.org/10.1097/MD.0000000000004560
  • Savarino, S. J., McKenzie, R., Tribble, D. R., Porter, C. K., O’Dowd, A., Sincock, S. A., Poole, S. T., DeNearing, B., Woods, C. M., Kim, H., Grahek S. L., Brinkley C., Crabb J. H., & Bourgeois A. L.. (2019). Hyperimmune bovine colostral anti-CS17 antibodies protect against enterotoxigenic Escherichia coli diarrhea in a randomized, doubled-blind, placebo-controlled human infection model. The Journal of Infectious Diseases, 220(3), 505–513. https://doi.org/10.1093/infdis/jiz135
  • Serrano, G., Kochergina, I., Albors, A., Diaz, E., Oroval, M., Hueso, G., & Serrano, J. M. (2020). Liposomal lactoferrin as potential preventative and cure for COVID-19. International Journal of Research in Health Sciences, 8(1), 8–15. https://doi.org/10.5530/ijrhs.8.1.3
  • Shing, C. M., Jenkins, D. G., Stevenson, L., & Coombes, J. S. (2006). The influence of bovine colostrum supplementation on exercise performance in highly trained cyclists. British Journal of Sports Medicine, 40(9), 797–801. https://doi.org/10.1136/bjsm.2006.027946
  • Shing, C. M., Peake, J., Suzuki, K., Okutsu, M., Pereira, R., Stevenson, L., Jenkins, D. G., & Coombes, J. S. (2007). Effects of bovine colostrum supplementation on immune variables in highly trained cyclists. Journal of Applied Physiology, 102(3), 1113–1122. https://doi.org/10.1152/japplphysiol.00553.2006
  • Siqueiros-Cendón, T., Arévalo-Gallegos, S., Iglesias-Figueroa, B. F., García-Montoya, I. A., Salazar-Martínez, J., & Rascón-Cruz, Q. (2014). Immunomodulatory effects of lactoferrin. Acta Pharmacologica Sinica, 35(5), 557–566. https://doi.org/10.1038/aps.2013.200
  • Sozańska, B. (2019). Raw Cow’s milk and its protective effect on allergies and asthma. Nutrients, 11(2), 1–11. https://doi.org/10.3390/nu11020469
  • Sponseller, J. K., Steele, J. A., Schmidt, D. J., Kim, H. B., Beamer, G., Sun, X., & Tzipori, S. (2015). Hyperimmune bovine colostrum as a novel therapy to combat clostridium difficile infection. Journal of Infectious Diseases, 211, 1334–1341. https://doi.org/10.1093/infdis/jiu605
  • Steele, J., Sponseller, J., Schmidt, D., Cohen, O., & Tzipori, S. (2013). Hyperimmune bovine colostrum for treatment of GI infections: A review and update on clostridium difficile. Human Vaccines & Immunotherapeutics, 9(7), 1565–1568. https://doi.org/10.4161/hv.24078
  • Tawfeek, H. I., Najim, N. H., & Al-Mashikhi, S. (2003). Efficacy of an infant formula containing anti-Escherichia coli colostral antibodies from hyperimmunized cows in preventing diarrhea in infants and children: A field trial. International Journal of Infectious Diseases, 7(2), 120–128. https://doi.org/10.1016/S1201-9712(03)90007-5
  • Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8
  • Tran, C. D., Kritas, S., Campbell, M. A. F., Huynh, H. Q., Lee, S. S., & Butler, R. N. (2010). Novel combination therapy for the eradication of Helicobacter pylori infection in a mouse model. Scandinavian Journal of Gastroenterology, 45(12), 1424–1430. https://doi.org/10.3109/00365521.2010.506245
  • Travis, M. A., & Sheppard, D. (2014). TGF-β activation and function in immunity. Annual Review of Immunology, 32(1), 51–82. https://doi.org/10.1146/annurev-immunol-032713-120257
  • Uchida, K., Hiruta, N., Yamaguchi, H., Yamashita, K., Fujimura, K., & Yasui, H. (2012). Augmentation of cellular immunity and protection against influenza virus infection by bovine late colostrum in mice. Nutrition, 28, 442–446. https://doi.org/10.1016/j.nut.2011.07.021
  • Ulfman, L. H., Leusen, J. H. W., Savelkoul, H. F. J., Warner, J. O., & van Neerven, R. J. J. (2018). Effects of bovine immunoglobulins on immune function, allergy, and infection. Frontiers in Nutrition, 5, 1–20. https://doi.org/10.3389/fnut.2018.00052
  • Valk, S. J., Piechotta, V., Chai, K. L., Doree, C., Monsef, I., Wood, E. M., Lamikanra, A., Kimber, C., McQuilten, Z., So-Osman, C., Estcourt, L. J., & Skoetz, N. (2020). Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: A rapid review. Cochrane Database of Systematic Reviews, 5, 1–134. https://doi.org/10.1002/14651858.CD013600
  • van Neerven, R. J. J. (2014). The effects of milk and colostrum on allergy and infection: Mechanisms and implications. Animal Frontiers, 4(2), 16–22. https://doi.org/10.2527/af.2014-0010
  • van Neerven, R. J. J., Knol, E. F., Heck, J. M. L., & Savelkoul, H. F. J. (2012). Which factors in raw cow’s milk contribute to protection against allergies? Journal of Allergy and Clinical Immunology, 130(4), 853–858. https://doi.org/10.1016/j.jaci.2012.06.050
  • Wakabayashi, H., Oda, H., Yamauchi, K., & Abe, F. (2014). Lactoferrin for prevention of common viral infections. Journal of Infection and Chemotherapy, 20(11), 666–671. https://doi.org/10.1016/j.jiac.2014.08.003
  • Wheeler, T. T., Hodgkinson, A. J., Prosser, C. G., & Davis, S. R. (2007). Immune components of colostrum and milk - A historical perspective. Journal of Mammary Gland Biology and Neoplasia, 12(4), 237–247. https://doi.org/10.1007/s10911-007-9051-7
  • Williams, N. C., Killer, S. C., Svendsen, I. S., & Jones, A. W. (2018). Immune nutrition and exercise: Narrative review and practical recommendations. European Journal of Sport Science, 19(1), 49–61. https://doi.org/10.1080/17461391.2018.1490458
  • Wong, C. (2016). O033 bovine colostrum as an adjunct therapy in the control of allergic respiratory disease in children. Annals of Allergy, Asthma & Immunology, 117(5), S12. https://doi.org/10.1016/j.anai.2016.09.393
  • Wong, E. B., Mallet, J. F., Duarte, J., Matar, C., & Ritz, B. W. (2014). Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4. Nutrition Research, 34(4), 318–325. https://doi.org/10.1016/j.nutres.2014.02.007
  • Xu, M. L., Kim, H. J., Chang, D. Y., & Kim, H. J. (2013). The effect of dietary intake of the acidic protein fraction of bovine colostrum on influenza A (H1N1) virus infection. Journal of Microbiology, 51(3), 389–393. https://doi.org/10.1007/s12275-013-2683-y
  • Xu, Mei Ling, Kim, Hyoung Jin, Wi, Ga Ram, & Kim, Hong-Jin. (2015). The effect of dietary bovine colostrum on respiratory syncytial virus infection and immune responses following the infection in the mouse. Journal of Microbiology, 53(9), 661–666. https://doi.org/10.1007/s12275-015-5353-4
  • Xu, M. L., Kim, H. J., Wi, G. R., & Kim, H. J. (2015). The effect of dietary bovine colostrum on respiratory syncytial virus infection and immune responses following the infection in the mouse. Journal of Microbiology, 53(9), 661–666. https://doi.org/10.1007/s12275-015-5353-4
  • Yadav, R., Angolkar, T., Kaur, G., & Buttar, H. S. (2016). Antibacterial and antiinflammatory properties of bovine colostrum. Recent Patents on Inflammation & Allergy Drug Discovery, 10(1), 49–53. https://doi.org/10.2174/1872214810666160219163118
  • Zylberman, V., Sanguineti, S., Pontoriero, A. V., Higa, S. V., Cerutti, M. L., Seijo, S. M. M., Pardo, R., Muñoz, L., Intrieri, M. E. A., Alzogaray, V. A., & Avaro, M. M. (2020). Development of a hyperimmune equine serum therapy for covid-19 in Argentina. Medicina (B.Aires), 80(Suppl. 3), 1–6.