1,221
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Inner filter effect-based immunoassay for the detection of acetamiprid using upconversion nanoparticles and gold nanoparticles

, , , , , , & show all
Pages 740-753 | Received 09 Aug 2021, Accepted 06 Oct 2021, Published online: 26 Oct 2021

References

  • Arts, R., Hartog, I. D., Zijlema, S., Thijssen, V., Stan, V., & Merkx, M. (2016). Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone. Analytical Chemistry, 88(8), 4525–4532. https://doi.org/10.1021/acs.analchem.6b00534
  • Chara-Serna, A.M., Epele, L.B., Morrissey, C.A., & Richardson, J.S. (2019). Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Science of the Total Environment, 692, 1291–1303.
  • Chen, F., Lu, Q. J., Huang, L. N., Liu, B. W., Liu, M. L., Zhang, Y. Y., & Liu, J. W. (2021). DNA triplex and quadruplex assembled nanosensors for correlating K+ and pH in lysosomes. Angewandte Chemie-International Edition, 60(10), 5453–5458. https://doi.org/10.1002/anie.202013302
  • Chen, H. Y., Pang, X., Ni, Z., Liu, M., Zhang, Y., & Yao, S. (2020). Upconversion nanoparticles with bright red luminescence for highly sensitive quantifying alkaline phosphatase activity based on target-triggered fusing reaction. Analytica Chimica Acta, 1095, 146–153. https://doi.org/10.1016/j.aca.2019.10.014
  • Chen, S., Yu, Y. L., & Wang, J. H. (2017). Inner filter effect-based fluorescent sensing systems: A review. Analytica Chimica Acta, 999, 13–26. https://doi.org/10.1016/j.aca.2017.10.026
  • Ding, Y., Chen, H., Yang, Q., Feng, L., Hua, X. D., & Wang, M. H. (2019). A fluorescence polarization immunoassay for detection of thiacloprid in environmental and agricultural samples. RSC Advances, 9(63), 36825–36830. https://doi.org/10.1039/C9RA04776J
  • Fang, A. J., Chen, H., Li, H., Liu, M., Zhang, Y., & Yao, S. (2017). Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions. Biosensors & Bioelectronics, 87, 545–551. https://doi.org/10.1016/j.bios.2016.08.111
  • Fang, Q., Zu, Q., Hua, X. D., Lv, P., Lin, W. W., Zhou, D. H., Xu, Z. H., Fan, J. R., Li, X. H., & Cao, H. Q. (2019). Quantitative determination of acetamiprid in pollen based on a sensitive enzyme-linked immunosorbent assay. Molecules, 24(7), 1265. https://doi.org/10.3390/molecules24071265
  • Frens, G. (1973). Preparation of gold dispersions of varying particle size: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science, 241(105), 20–22. https://doi.org/10.1038/physci241020a0
  • Hladik, M. L., Main, A. R., & Goulson, D. (2018). Environmental risks and challenges associated with neonicotinoid insecticides. Environmental Science & Technology, 52(6), 3329−3335. https://doi.org/10.1021/acs.est.7b06388
  • Hu, W. W., Chen, Q. S., Li, H. H., Ouyang, Q., & Zhao, J. W. (2016). Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, ho@SiO2 and Au nanoparticles. Biosensors & Bioelectronics, 80, 398–404. https://doi.org/10.1016/j.bios.2016.02.001
  • Hua, X. D., Qian, G. L., Yang, J. F., Hu, B. S., Fan, J. Q., Qin, N., Li, G., Wang, Y. Y., & Liu, F. Q. (2010). Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples. Biosensors & Bioelectronics, 26(1), 189–194. https://doi.org/10.1016/j.bios.2010.06.005
  • Hun, X., & Zhang, Z. J. (2007). Functionalized fluorescent core-shell nanoparticles used as a fluorescent labels in fluoroimmunoassay for IL-6. Biosensors & Bioelectronics, 22(11), 2743–2748. https://doi.org/10.1016/j.bios.2007.01.022
  • Imamura, T., Yanagawa, Y., Nishikawa, K., Matsumoto, N., & Sakamoto, T. (2010). Two cases of acute poisoning with acetamiprid in humans. Clinical Toxicology, 48(8), 851–853. https://doi.org/10.3109/15563650.2010.517207
  • Kumar, A., Verma, A., & Kumar, A. (2013). Accidental human poisoning with a neonicotinoid insecticide, imidacloprid: A rare case report from rural India with a brief review of literature. Egyptian Journal of Forensic Sciences, 3(4), 123–126. https://doi.org/10.1016/j.ejfs.2013.05.002
  • Liu, L. Q., Suryoprabowo, S., Zheng, Q. K., Song, S. S., & Kuang, H. (2017). Development of an immunochromatographic strip for detection of acetamiprid in cucumber and apple samples. Food and Agricultural Immunology, 28(5), 767–778. https://doi.org/10.1080/09540105.2017.1312294
  • Liu, Y., Zhao, Y., Zhang, T. Y., Chang, Y. Y., Wang, S. J., Zou, R. B., Shen, L. R., & Guo, Y. R. (2019). Quantum dots-based immunochromatographic strip for rapid and sensitive detection of acetamiprid in agricultural products. Frontiers in Chemistry, 7, 76. https://doi.org/10.3389/fchem.2019.00076
  • Long, Q., Li, H., Zhang, Y., & Yao, S. (2015). Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosensors & Bioelectronics, 68, 168–174. https://doi.org/10.1016/j.bios.2014.12.046
  • Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., & Sattelle, D. B. (2005). Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: Electrophysiology, molecular biology, and receptor modeling studies. Bioscience Biotechnology Biochemistry, 69(8), 1442–1452. https://doi.org/10.1271/bbb.69.1442
  • Nowinski, R. C., Lostrom, M. E., Tam, M. R., Stone, M. R., & Burnette, W. N. (1979). The isolation of hybrid cell lines producing monoclonal antibodies against the p15 (E) protein of ecotropic murine leukemia viruses. Virology, 93(1), 113–126. https://doi.org/10.1016/0042-6822(79)90280-0
  • Saha, S., Mondal, R., Mukherjee, S., Sarkar, M., & Kole, R. K. (2017). Persistence of acetamiprid in paddy and soil under west bengal agro-climatic conditions. Environmental Monitoring and Assessment, 189(4), 150. https://doi.org/10.1007/s10661-017-5871-0
  • Sanchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., & Desneux, N. (2016). Are bee diseases linked to pesticides? − a brief review. Environment International, 89−90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009
  • Si, F. F., Zou, R. B., Jiao, S. S., Qiao, X. S., Guo, Y. R., & Zhu, G. N. (2018). Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety, 148, 862–868. https://doi.org/10.1016/j.ecoenv.2017.11.062
  • Stalder, K., & Stöber, W. (1965). Haemolytic activity of suspensions of different silica modifications and inert dusts. Nature, 207(999), 874–875. https://doi.org/10.1038/207874a0
  • Sun, Y. J., Chen, Y., Tian, L. J., Yu, Y., Kong, X. G., Zhao, J. W., & Zhang, H. (2007). Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology, 18(27), 275609. https://doi.org/10.1088/0957-4484/18/27/275609
  • Terayama, H., Qu, N., Endo, H., Ito, M., Tsukamoto, H., Umemoto, K., Kawakami, S., Fujino, Y., Tatemichi, M., & Sakabe, K. (2018). Effect of acetamiprid on the immature murine testes. International Journal of Environmental Health Research, 28(6), 683–696. https://doi.org/10.1080/09603123.2018.1504897
  • Wanatabe, S., Ito, S., Kamata, Y., Omoda, N., Yamazaki, T., Munakata, H., Kaneko, T., & Yuasa, Y. (2001). Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Analytica Chimica Acta, 427(2), 211–219. https://doi.org/10.1016/S0003-2670(00)01126-0
  • Wang, L. M., Zhang, Q., Chen, D., Liu, Y., Li, C., Hu, B., Du, D., & Liu, F. (2011). Development of a specific enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticide fenthion in real samples based on monoclonal antibody. Analytical Letters, 44(9), 1591–1601. https://doi.org/10.1080/00032719.2010.520391
  • Watanabe, E., Miyake, S., Baba, K., Eun, H., & Endo, S. (2006). Immunoassay for acetamiprid detection: Application to residue analysis and comparison with liquid chromatography. Analytical & Bioanalytical Chemistry, 386(5), 1441–1448. https://doi.org/10.1007/s00216-006-0683-z
  • Watanabe, E., Tomomi, Y., Yuki, H., Harada, A., Iwasa, S., & Miyake, S. (2018). Organic solvent-free immunoassay for quantitative detection of neonicotinoid acetamiprid residues in agricultural products. Analytical Methods, 10(26), 3162–3169. https://doi.org/10.1039/C8AY01061G
  • Wilhelm, S., Hirsch, T., Patterson, W. M., Scheucher, E., Mayr, T., & Wolfbeis, O. S. (2013). Multicolor upconversion nanoparticles for protein conjugation. Theranostics, 3(4), 239–248. https://doi.org/10.7150/thno.5113
  • Wu, Q., Chen, H., Fang, A., Wu, X., Liu, M., Li, H., Zhang, Y., & Yao, S. (2017). Universal multifunctional nanoplatform based on target-induced in situ promoting au seeds growth to quench fluorescence of upconversion nanoparticles. ACS Sensors, 2(12), 1805–1813. https://doi.org/10.1021/acssensors.7b00616
  • Xu, X. H., Yuna, G., Liu, W., He, K., Guo, Y., Quan, W. X., & Sundaram, G. (2018). Hapten-grafted programmed probe as a corecognition element for a competitive immunosensor to detect acetamiprid residue in agricultural products. Journal of Agricultural and Food Chemistry, 66(29), 7815–7821. https://doi.org/10.1021/acs.jafc.8b02487
  • Yao, X. H., Min, H., Lü, Z. H., & Yuan, H. P. (2006). Influence of acetamiprid on soil enzymatic activities and respiration. European Journal of Soil Biology, 42(2), 120–126. https://doi.org/10.1016/j.ejsobi.2005.12.001
  • You, H. J., Hua, X. D., Feng, L., Sun, N. N., Rui, Q., Wang, L. M., & Wang, M. H. (2017). Competitive immunoassay for imidaclothiz using upconversion nanoparticles and gold nanoparticles as labels. Microchimica Acta, 184(4), 1085–1092. https://doi.org/10.1007/s00604-017-2097-3
  • Yun, W., Jiang, J. L., Cai, D. Z., Zhao, P. X., Liao, J. S., & Sang, G. (2016). Ultrasensitive visual detection of DNA with tunable dynamic range by using unmodified gold nanoparticles and target catalyzed hairpin assembly amplification. Biosensors & Bioelectronics, 77, 421–427. https://doi.org/10.1016/j.bios.2015.09.065