211
Views
8
CrossRef citations to date
0
Altmetric
Infection

Innovative nanocompounds for cutaneous administration of classical antifungal drugs: a systematic review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 617-626 | Received 24 Feb 2018, Accepted 28 Apr 2018, Published online: 16 Apr 2019

References

  • Dou Y-H, Du J-K, Liu H-L, et al. The role of procalcitonin in the identification of invasive fungal infection – a systemic review and meta-analysis. Diagn Microbiol Infect Dis. 2013;76:464.
  • Shao P-L, Huang L-M, Hsueh P-R. Recent advances and challenges in the treatment of invasive fungal infections. Int J Antimicrob Agents. 2007;30:487.
  • de Oliveira COP, de Souza NL, da Silva EMM, et al. Revista Enfermagem. UERJ. 2013;21:90.
  • Amorim A, Guedes-Vaz L, Araujo R. Susceptibility to five antifungals of Aspergillus fumigatus strains isolated from chronically colonised cystic fibrosis patients receiving azole therapy. Int J Antimicrob Agents. 2010;35:396.
  • Deepak R, Ponnusami V, Jayapradha R. Response surface methodology: optimisation of antifungal bioemulsifier from novel Bacillus thuringiensis. Sci World J. 2014;2014:423289.
  • Yoon M-Y, Kim YS, Ryu SY, et al. In vitro and in vivo antifungal activities of decursin and decursinol angelate isolated from Angelica gigas against Magnaporthe oryzae, the causal agent of rice blast. Pest Biochem Physiol. 2011;101:118.
  • Joseph-Horne T, Manning N, Holoman D, et al. Nonsterol related resistance in Ustilago maydis to the polyene antifungals, amphotericin B and nystatin. Phytochemistry. 1996;42:637.
  • Perez-Nadales E, Nogueira MFA, Baldin C, et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol. 2014;70:42.
  • Richter SS, Galask RP, Messer SA, et al. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol. 2005; 43:2155.
  • Serhan G, Stack CM, Perrone GG, et al. The polyene antifungals, amphotericin B and nystatin, cause cell death in Saccharomyces cerevisiae by a distinct mechanism to amphibian-derived antimicrobial peptides. Ann Clin Microbiol Antimicrob. 2014;13:18.
  • Watson M, Grimshaw J, Bond CM, et al. Oral versus intra-vaginal imidazole and triazole anti-fungal treatment of uncomplicated vulvovaginal candidiasis (thrush). Cochrane Database Syst Rev. 2001;(3).
  • Denning DW. Echinocandin antifungal drugs. Lancet. 2003;362:1142.
  • Khan ZUH, Khan AU, Wan P, et al. In vitro pharmacological screening of three newly synthesised pyrimidine derivatives. Nat Prod Res. 2015;29:933.
  • Ceruso M, Carta F, Osman SM, et al. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg Med Chem. 2015;23:4181.
  • Akhtar N, Verma A, Pathak K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr Pharm Des. 2015;21:2892.
  • Vazquez JA. Infection due to non-candidal yeasts. In: Diagnosis and treatment of fungal infections; 2015. p. 119–128.
  • Ribeiro Rosa EA. (Ed.). (2015). Oral candidosis: physiopathology, decision making, and therapeutics. Berlin: Springer-Verlag.
  • Zonios D, Yamazaki H, Murayama N, et al. Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis. 2014;209:1941.
  • Hussain A, Samad A, Nazish I, et al. Nanocarrier-based topical drug delivery for an antifungal drug. Drug Dev Indus Pharm. 2014;40:527.
  • Amaral AC, Felipe MSS. Nanotechnological strategies to improve antifungal therapy. Rec Patent Nanomed. 2013;3:56.
  • Tang X, Zhu H, Sun L, et al. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Int J Nanomedicine. 2014;9:5403.
  • Eldridge ML, Chambers CJ, Sharon VR, et al. Fungal infections of the skin and nail: new treatment options. Expert Rev Anti Infect Ther. 2014;12:1389.
  • Varon AG, Nouer SA, Barreiros G, et al. Superficial skin lesions positive for Fusarium are associated with subsequent development of invasive fusariosis. J Infect. 2014;68:85.
  • Salvatori G, Carminati P, Romani L. Google Patents. 2014.
  • Galhardo MC, De Oliveira RM, Valle AC, et al. Molecular epidemiology and antifungal susceptibility patterns of Sporothrix schenckii isolates from a cat-transmitted epidemic of sporotrichosis in Rio de Janeiro, Brazil. Med Mycol. 2008;46(2):141–151.
  • Neumann A, Baginski M, Czub J. How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets. J Am Chem Soc. 2010;132:18266.
  • Bell-Syer SE, Khan SM, Torgerson DJ. Oral treatments for fungal infections of the skin of the foot. Sao Paulo Med J. 2014;132:127.
  • Costa RO, Macedo PM, Carvalhal A, et al. Use of potassium iodide in dermatology: updates on an old drug. Anais Brasileiros de Dermatologia. 2013;88(3):396–402.
  • Eschenauer G, De Pestel DD, Carver PL. Comparison of echinocandin antifungals. Ther Clin Risk Manag. 2007;3:71.
  • Souto EB, Muller RH. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie. 2006;61:431
  • Moudgal VV, Sobel JD. Antifungal drugs in pregnancy: a review. Expert Opin Drug Saf. 2003;2:475.
  • Pilmis B, Jullien V, Sobel J, et al. Antifungal drugs during pregnancy: an updated review. J Antimicrob Chemother. 2015;70:14.
  • Sapra A, Kumar P, Kakkar S, et al. Synthesis, antimicrobial evaluation and QSAR studies of p-hydroxy benzoic acid derivatives. Drug Res. 2014;64:17.
  • Zhao M, Hu J, Zhang L, et al. Study of amphotericin B magnetic liposomes for brain targeting. Int J Pharm. 2014;475:9.
  • Mikawlrawng K, Kaushik S, Pushker A, et al. Comparative in vitro antifungal activities of Simarouba glauca against Fusarium oxysporum and Aspergillus parasiticus. J Med Plant Stud. 2014;2:1–7.
  • Cassano R, Ferrarelli T, Mauro MV, et al. Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv. 2016;23:1037–1046.
  • Imbert S, Palous M, Meyer I, et al. In vitro combination of voriconazole and miltefosine against cinically relevant molds. Antimicrob Agents Chemother. 2014;58:6996–6998.
  • Kote SR, Mishra R, Khan AA, et al. Synthesis and cytotoxic evaluation of novel 2,3-di-O-alkyl derivatives of l-ascorbic acid. Med Chem Res. 2014;23:1257.
  • Ellepola AN, Khan ZU, Joseph B, et al. Prevalence of Candida dubliniensis among oral Candida isolates in patients attending the Kuwait University Dental Clinic. Med Princ Pract. 2011;20:271–276.
  • Darwish ES, Fattah AMA, Attaby FA, et al. Synthesis and antimicrobial evaluation of some novel thiazole, pyridone, pyrazole, chromene, hydrazone derivatives bearing a biologically active sulfonamide moiety. Int J Mol Sci. 2014;15:1237.
  • Soares LA, Sardi JDCO, Gullo FP, et al. Anti dermatophytic therapy: prospects for the discovery of new drugs from natural products. Braz J Microbiol. 2013;44:1035–1041.
  • Alvarado HL, Abrego G, Souto EB, et al. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: in vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces. 2015;130:40.
  • Clares B, Calpena AC, Parra A, et al. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. Int J Pharm. 2014;473:591.
  • Souto EB, Muller RH. SLN and NLC for topical delivery of ketoconazole. J Microencapsul. 2005;22:501.
  • Souto EB, Muller RH. Rheological and in vitro release behaviour of clotrimazole-containing aqueous SLN dispersions and commercial creams. Pharmazie. 2007;62:505.
  • Alomrani AH, Shazly GA, Amara AA, et al. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: in vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf B Biointerfaces. 2014;121:74.
  • Elmoslemany RM, Abdallah OY, El-Khordagui LK, et al. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes. AAPS PharmSciTech. 2012;13:723.
  • Mitkari BV, Korde SA, Mahadik KR, et al. Formulation and evaluation of topical liposomal gel for fluconazole. Indian J Pharm Educ Res. 2010;44(4):324–333.
  • Agarwal R, Katare OP, Vyas SP. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharma. 2001;228(1-2):43–52.
  • Singh A, Rathore P, Shukla M, et al. Comparative studies on skin permeation of miconazole using different novel carriers. Int J Pharm Sci Res. 2010;1(9):61–66.
  • Bhalaria MK, Naik S, Misra AN. Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol. 2009;47:368.
  • Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine. 2012;8:489.
  • Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24:163.
  • Guo F, Wang J, Ma M, et al. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. J Mater Sci Mater Med. 2015;26:1.
  • Sudhakar B, Ravi Varma JN, Ramana Murthy KV. Formulation, characterization and ex vivo studies of terbinafine HCl liposomes for cutaneous delivery. Curr Drug Deliv. 2014;11(4):521–530.
  • El-Badry M, Fetih G, Shakeel F. Comparative topical delivery of antifungal drug croconazole using liposome and micro-emulsion-based gel formulations. Drug Deliv. 2014;21:34.
  • Patel RP, Patel G, Patel H, et al. Formulation and evaluation of transdermal patch of aceclofenac. Res J Pharma Dosage Forms Technol. 2009;1(2):108–115.
  • Souto EB, Wissing SA, Barbosa CM, et al. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278:71.
  • Chen Y, Liu D, Liu J, et al. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine. 2012;7:4409.
  • Gokce EH, Sandri G, Bonferoni MC, et al. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm. 2008;364:76.
  • Jain S, Jain S, Khare P, et al. Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv. 2010;17:443.
  • Gupta M, Tiwari S, Vyas SP. Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis. Pharm Dev Technol. 2013;18:550.
  • Aggarwal N, Goindi S. Preparation and in vivo evaluation of solid lipid nanoparticles of griseofulvin for dermal use. J Biomed Nanotechnol. 2013;9:564.
  • Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49:311.
  • Wavikar P, Vavia P. Nanolipidgel for enhanced skin deposition and improved antifungal activity. AAPS PharmSciTech. 2013;14:222.
  • Bhalekar MR, Pokharkar V, Madgulkar A, et al. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech. 2009;10:289.
  • Fernández-Campos F, Naveros B, Serrano O, et al. Evaluation of novel nystatin nanoemulsion for skin candidiasis infections. Mycoses. 2013;56:70.
  • Santos CM, de Oliveira RB, Arantes VT, et al. Amphotericin B-loaded nanocarriers for topical treatment of cutaneous leishmaniasis: development, characterization, and in vitro skin permeation studies. J Biomed Nanotechnol. 2012;8:322.
  • Hussain A, Samad A, Ramzan M, et al. Elastic liposome-based gel for topical delivery of 5-fluorouracil: in vitro and in vivo investigation. Drug Deliv. 2016;23(4):1115–1129.
  • Hussain A, Samad A, Singh SK, et al. Enhanced stability and permeation potential of nanoemulsion containing sefsol-218 oil for topical delivery of amphotericin B. Drug Dev Ind Pharm. 2015;41:780.
  • Sampathi S, Mankala SK, Wankar J, et al. Nanoemulsion based hydrogels of itraconazole for transdermal drug delivery. J Scientific Industrial Res. 2015;74:88–92.
  • Mahtab A, Anwar M, Mallick N, et al. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech. 2016;17(6):1477–1490.
  • Elosaily GH, Salem HA, Hassan AM, et al. Formulation, In vitro and In vivo evaluation of nystatin topical gel. J Am Sci. 2014;10:75–85.
  • De Melo Barbosa R, Finkler CLL, Severino P, et al. Influence of polyethylene glycol-8-lauryl ester in the structural lipid of the elastic liposomes. Afr J Pharm Pharmacol. 2014;8:969–977.
  • Severino P, Moraes LF, Zanchetta B, et al. Elastic liposomes containing benzophenone-3 for sun protection factor enhancement. Pharm Dev Technol. 2012;17:661.
  • Souto EB. A special issue on lipid-based delivery systems (liposomes, lipid nanoparticles, lipid matrices and medicines). J Biomed Nanotechnol. 2009;5:315
  • Tanrıverdi ST, Özer Ö. Novel topical formulations of terbinafine-HCl for treatment of onychomycosis. Eur J Pharm Sci. 2013;48:628.
  • Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res. 2010;1:274.
  • Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res. 2015;32:389.
  • Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2016;23(2):395–404.
  • Souto EB, Doktorovova S. Solid lipid nanoparticle formulations: pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzymol. 2009;464:105–129.
  • Souto EB, Müller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol. 2010;197:115–141.
  • Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – a systematic review of in vitro data. Eur J Pharm Biopharm. 2014;87:1.
  • Souto EB, Doktorovova S. Chapter 6 – solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. Meth Enzymol. 2009;464:105.
  • Souto EB, Muller RH. Cosmetic features and applications of lipid nanoparticles (SLN®, NLC®). Int J Cosmet Sci. 2008;30:157.
  • Severino P, Pinho SC, Souto EB, et al. Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces. 2011;86:125.
  • Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev. 2007;59:478.
  • Souto EB, Muller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol. 2010; (197):115–41.
  • Severino P, Pinho SC, Souto EB, et al. Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles. J Therm Anal Calorim. 2012;108:101.
  • Souto EB, Muller RH. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J Microencapsul. 2006;23:377.
  • Ramasamy T, Khandasami US, Ruttala H, et al. Development of solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal agent. Macromol Res. 2012;20:682.
  • Mohanty B, Majumdar DK, Mishra SK, et al. Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm Dev Technol. 2015; 20:458.
  • Samein LH. Preparation and evaluation of nystatin loaded-solid-lipid nanoparticles for topical delivery. Int J Pharm Pharm Sci. 2014;6:592–597
  • Gan L, Wang J, Jiang M, et al. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18:290.
  • Mora-Huertas CE, Garrigues O, Fessi H, et al. Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: comparative study. Eur J Pharm Biopharm. 2012;80:235.
  • Junyaprasert VB, Teeranachaideekul V, Souto EB, et al. Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. Int J Pharm. 2009;377:207.
  • Lu W-C, Chiang B-H, Huang D-W, et al. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification. Ultrason Sonochem. 2014;21:826.
  • Song Z, Sun H, Yang Y, et al. Enhanced efficacy and anti-biofilm activity of novel nanoemulsions against skin burn wound multi-drug resistant MRSA infections. Nanomedicine. 2016;12(6):1543–1555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.