2,248
Views
4
CrossRef citations to date
0
Altmetric
Pages 37-141 | Received 18 Mar 2020, Accepted 16 Jul 2020, Published online: 03 Aug 2020

References

  • Abbott LF, Regehr WG. 2004. Synaptic computation. Nature. 4310(7010):796–803. doi:10.1038/nature03010.
  • Alvernhe A, Save E, Poucet B. 2011. Local remapping of place cell firing in the Tolman detour task. Eur J Neurosci. 330(9):1696–1705. doi:10.1111/j.1460-9568.2011.07653.x.
  • Aronov D, Nevers R, Tank DW. 2017. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature. 5430(7647):719–722. doi:10.1038/nature21692.
  • Asaad WF, Rainer G, Miller EK. 1998. Neural activity in the primate prefrontal cortex during associative learning. Neuron. 210(6):1399–1407. doi:10.1016/S0896-6273(00)80658-3.
  • Becket Ebitz R, Albarran E, Moore T. 2017 Dec. Exploration disrupts choice-predictive signals and alters dynamics in prefrontal cortex. Neuron. 97:450–461.
  • Botvinick MM, Niv Y, Barto AC. 2009 Dec. Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective. Cognition. 1130(3):262–280. doi:10.1016/j.cognition.2008.08.011.
  • Brunyé TT, Wood MD, Houck LA, Taylor HA. 2017. The path more travelled: time pressure increases reliance on familiar route-based strategies during navigation. Quarterly J Exp Psychol. 700(8):1439–1452. doi:10.1080/17470218.2016.1187637.
  • Burgess N, Recce M, O’Keefe J. 1994. A model of hippocampal function. Neural Networks. 70(6–7):1065–1081. doi:10.1016/S0893-6080(05)80159-5.
  • Buxhoeveden DP. 2002. The minicolumn hypothesis in neuroscience. Brain. 1250(5):935–951. doi:10.1093/brain/awf110.
  • Cazalis F, Valabrègue R, Pélégrini-Issac M, Asloun S, Robbins TW, Granon S. 2003. Individual differences in prefrontal cortical activation on the tower of London planning task: implication for effortful processing. Eur J Neurosci. 170(10):2219–2225. doi:10.1046/j.1460-9568.2003.02633.x.
  • Chebotar Y, Hausman K, Zhang M, Sukhatme G, Schaal S, Levine S. 2017 Mar. Combining model-based and model-free updates for trajectory-centric reinforcement learning. CEUR Workshop Proc.1680:60–66.
  • Chersi F, Pezzulo G. 2012. Using hippocampal-striatal loops for spatial navigation and goal-directed decision-making. Cogn Process. 130(1 SUPPL):125–129. doi:10.1007/s10339-012-0475-7.
  • Crick F. 1989. The recent excitement about neural networks. Nature. 337(6203):129–132. doi:10.1038/337129a0.
  • Cuperlier N, Quoy M, Gaussier P. 2007. Neurobiologically inspired mobile robot navigation and planning. Frontiers in neurorobotics. 1:3. Frontiers. https://doi.org/10.3389/neuro.12.003.2007.
  • Ebitz, RB, Albarran E, and Moore T. 2018 “Exploration disrupts choice-predictive signals and alters dynamics in prefrontal cortex.” Neuron 97(2):450–461
  • Dolan RJ, Dayan P. 2013. Goals and habits in the brain. Neuron. 80(2):312–325. doi:10.1016/j.neuron.2013.09.007.
  • Erdem UM, Hasselmo M. 2012. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci. 350(6):916–931. doi:10.1111/j.1460-9568.2012.08015.x.
  • Evans BD, Stringer SM. 2012. Transformation-invariant visual representations in self-organizing spiking neural networks. Front Comput Neurosci. 60(July):1–19.
  • Faisal AA, Selen LPJ, Wolpert DM. 2008. Noise in the nervous system. Nat Rev Neurosci. 90(4):292–303. doi:10.1038/nrn2258.
  • Fakhari P, Khodadadi A, Busemeyer JR. 2018. The detour problem in a stochastic environment: tolman revisited. Cogn Psychol. 101:29–49. doi:10.1016/j.cogpsych.2017.12.002.
  • Florensa C, Duan Y, Abbeel P. 2017. Stochastic neural networks for hierarchical reinforcement learning. arXiv preprint arXiv. 1704.03012:1–17.
  • Friedrich J, Lengyel M. 2016. Goal-directed decision making with spiking neurons. J Neurosci. 360(5):1529–1546. doi:10.1523/JNEUROSCI.2854-15.2016.
  • Fuster JM. 2001 May. The prefrontal cortex–an update: time is of the essence. Neuron. 300(2):319–333. doi:10.1016/S0896-6273(01)00285-9.
  • Geva-Sagiv M, Las L, Yovel Y, Ulanovsky N. 2015. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience. 16(2):94–108. doi:10.1038/nrn3888.
  • Girgin S, Polat F, Alhajj R. 2010. Improving reinforcement learning by using sequence trees. Mach Learn. 810(3):283–331. doi:10.1007/s10994-010-5182-y.
  • Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI. 2005 Aug. Microstructure of a spatial map in the entorhinal cortex. Nature. 4360(7052):801–806. doi:10.1038/nature03721.
  • Hampton AN, Bossaerts P, O’Doherty JP. 2006. The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans. J Neurosci. 260(32):8360–8367. doi:10.1523/JNEUROSCI.1010-06.2006.
  • Hasselmo ME. 2005. A model of prefrontal cortical mechanisms for goal-directed behavior. J Cogn Neurosci. 170(7):1115–1129. doi:10.1162/0898929054475190.
  • Hirtle JC, Jonides J. 1985. Evidence of hierarchcies in cognitive maps. Mem Cognit. 130(3):208–217. doi:10.3758/BF03197683.
  • Hölscher C, Büchner SJ, Meilinger T, Strube G. 2008. Adaptivity of wayfinding strategies in a multi-building ensemble: the effects of spatial structure, task requirements, and metric information. J Environ Psychol. 290(2):208–219.
  • Howard LR, Javadi AH, Yu Y, Mill RD, Morrison LC, Knight R, Loftus MM, Staskute L, Spiers HJ. 2014. The hippocampus and entorhinal cortex encode the path and euclidean distances to goals during navigation. Curr Biol. 240(12):1331–1340. doi:10.1016/j.cub.2014.05.001.
  • Johnson A, Redish AD. 2007 Nov. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci. 270(45):12176–12189. doi:10.1523/JNEUROSCI.3761-07.2007.
  • Keramati M, Dezfouli A, Piray P. 2011 May. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput Biol. 70(5):e1002055. doi:10.1371/journal.pcbi.1002055.
  • Klippel A, Tappe H, Habel C. 2003. Pictorial representations of routes: chunking route segments during comprehension. Spatial Cognit III. 2685:11–33. Springer.
  • Kulkarni TD, Narasimhan KR, Saeedi A, Tenenbaum JB. 2016 Apr. Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. Advances in Neural Information Processing Systems, 29: 3675–3683. Curran Associates, Inc. http://papers.nips.cc/paper/6233-hierarchical-deep-reinforcement-learning-integrating-temporal-abstraction-and-intrinsic-motivation.pdf
  • Kurth-Nelson Z, Economides M, Dolan RJ, Dayan P. 2016 Jul. Fast sequences of non-spatial state representations in humans. Neuron. 910(1):194–204. doi:10.1016/j.neuron.2016.05.028.
  • Lengyel M, Huhn Z, Érdi P. 2005. Computational theories on the function of theta oscillations. Biol Cybern. 920(6):393–408. doi:10.1007/s00422-005-0567-x.
  • London M, Roth A, Beeren L, Häusser M, Latham PE. 2010. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature. 4660(7302):123–127. doi:10.1038/nature09086.
  • Luppino G, Matelli M, Camarda R, Rizzolatti G. 1993. Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol. 3380(1):114–140. doi:10.1002/cne.903380109.
  • Maass W. 2014. Noise as a resource for computation and learning in networks of spiking neurons. Proc IEEE. 1020(5):860–880. doi:10.1109/JPROC.2014.2310593.
  • Marblestone AH, Wayne G, Kording KP. 2016 Jun. Towards an integration of deep learning and neuroscience. Technical report.
  • Martinet L-E, Sheynikhovich D, Benchenane K, Arleo A. 2011. Spatial learning and action planning in a prefrontal cortical network model. PLoS Comput Biol. 70(5):e1002045. doi:10.1371/journal.pcbi.1002045.
  • Matsumoto J, Makino Y, Miura H, Yano M. 2011. A computational model of the hippocampus that represents environmental structure and goal location, and guides movement. Biol Cybern. 1050(2):139–152. doi:10.1007/s00422-011-0454-6.
  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B. 2006. Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci. 70(8):0663–678. doi:10.1038/nrn1932.
  • Morris RGM. 1981 May. Spatial localization does not require the presence of local cues. Learn Motiv. 120(2):239–260. doi:10.1016/0023-9690(81)90020-5.
  • Nagabandi A, Kahn G, Fearing RS, Levine S. 2017. Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International Conference on Robotics and Automation (ICRA), 7559–7566. https://doi.org/10.1109/ICRA.2018.8463189
  • Nogueira R, Abolafia JM, Drugowitsch J, Balaguer-Ballester E, Sanchez-Vives MV, Moreno-Bote R. 2017 Mar. Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. Nat Commun. 8:14823. doi:10.1038/ncomms14823.
  • O’Keefe J, Nadel L. 1978. The hippocampus as a cognitive map. Oxford: Oxford University Press.
  • Payyanadan RP. 2018. Understanding the influence of familiarity on route choice among older drivers [PhD thesis].
  • Pickett M, Barto AG. 2002. PolicyBlocks: an algorithm for creating useful macro-actions in reinforcement learning. Proc 19th Int Conf Mach Learn. 19(August):506–513.
  • Pieter R. 2018. Roelfsema and Anthony Holtmaat. Control of synaptic plasticity in deep cortical networks. Nat Rev Neurosci. 190(3):166–180.
  • Ponulak F, Hopfield JJ. 2013. Rapid, parallel path planning by propagating wavefronts of spiking neural activity. Front Comput Neurosci. 7:98. doi:10.3389/fncom.2013.00098.
  • Ramkumar P, Acuna DE, Berniker M, Grafton ST, Turner RS, Kording KP. 2016. Chunking as the result of an efficiency computation trade-off. Nat Commun. 7:12176. doi:10.1038/ncomms12176.
  • Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ. 2014. Synaptic tagging during memory allocation. Nat Rev Neurosci. 150(3):157–169. doi:10.1038/nrn3667.
  • Rolls ET, Stringer SM, Elliot T. 2006 Dec. Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network. 170(4):447–465. doi:10.1080/09548980601064846.
  • Rolls ET, Treves A. 1998. Neural networks and brain function. 1st ed. Oxford, UK: Oxford University Press.
  • Russek EM, Momennejad I, Botvinick MM, Gershman SJ, Daw ND. 2016. Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLoS Comput Biol. 130(October):0083857.
  • Schuck NW, Cai MB, Wilson RC, Niv Y. 2016 Sep. Human orbitofrontal cortex represents a cognitive map of state space. Neuron. 910(6):1402–1412. doi:10.1016/j.neuron.2016.08.019.
  • Shima K, Tanji J. 2000. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J Neurophysiol. 840(4):2148–2160. doi:10.1152/jn.2000.84.4.2148.
  • Simon DA, Daw ND. 2011. Neural correlates of forward planning in a spatial decision task in humans. J Neurosci. 310(14):5526–5539. doi:10.1523/JNEUROSCI.4647-10.2011.
  • Spiers HJ, Maguire EA. 2008 Sep. The dynamic nature of cognition during wayfinding. J Environ Psychol. 280(3):232–249. doi:10.1016/j.jenvp.2008.02.006.
  • Sutton RS, Precup N, Singh S. 1999 Aug. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artif Intell. 1120(1–2):181–211. doi:10.1016/S0004-3702(99)00052-1.
  • Taghizadeh N, Beigy H. 2013. A novel graphical approach to automatic abstraction in reinforcement learning. Rob Auton Syst. 610(8):821–835. doi:10.1016/j.robot.2013.04.010.
  • Tanji J, Hoshi E. 2008 Jan. Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev. 880(140):37–57. doi:10.1152/physrev.00014.2007.
  • Tessler C, Givony S, Zahavy T, Mankowitz DJ, Mannor S. 2016. A deep hierarchical approach to lifelong learning in minecraft. In Thirty-First AAAI Conference on Artificial Intelligence, 1553–1561.
  • Timpf S, Kuhn W. 2003. Granularity transformations in wayfinding. Lect Notes Artif Intell. 2685:77–88.
  • Tolman EC. 1938. The determiners of behavior at a choice point. Psychol Rev. 450(1):1–41. doi:10.1037/h0062733.
  • Tolman EC. 1948. Cognitive maps in rats and men. Psychol Rev. 550(4):189–208. doi:10.1037/h0061626.
  • Tolman EC, Honzik CH. 1930. “Insight” in rats. Univ California Publ Psychol. 40(14):215–232.
  • Tolman EC, Ritchie BF, Kalish D. 1946. Studies in spatial learning. I. orientation andthe short-cut. J Exp Psychol. (36):13–24. American Psychological Association. doi:10.1037/h0053944.
  • Tomko M, Winter S, Claramunt C. 2008. Experiential hierarchies of streets. Comput Environ Urban Syst. 320(1):41–52. doi:10.1016/j.compenvurbsys.2007.03.003.
  • Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M, Silver D, Kavukcuoglu K. 2017 Mar. FeUdal networks for hierarchical reinforcement learning. arXiv:1703.
  • Wallis JD, Anderson KC, Miller EK. 2001. Single neurons in prefrontal cortex encode abstract roles. Nature. 4110(6840):953–956. doi:10.1038/35082081.
  • Ward G, Allport A. 1997. Planning and problem-solving using the five-disc tower of London task. The Quarterly Journal of Experimental Psychology Section A, 50(1):49–78. London, Uk: SAGE Publications.
  • Wiener JM, Mallot HA. 2003. ‘Fine-to-Coarse’ route planning and navigation in regionalized environments. Spat Cogn Comput. 30(4):331–358. doi:10.1207/s15427633scc0304_5.
  • Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014. Orbitofrontal cortex as a cognitive map of task space. Neuron. 810(2):267–278. doi:10.1016/j.neuron.2013.11.005.