403
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Radiosensitization of ultrasmall GNP–PEG–cRGDfK in ALTS1C1 exposed to therapeutic protons and kilovoltage and megavoltage photons

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 124-136 | Received 16 Jul 2017, Accepted 09 Nov 2017, Published online: 08 Jan 2018

References

  • Albanese A, Chan CW. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano. 5:5478–5489.
  • Al Zaki A, Hui JZ, Higbee E, Tsourkas A. 2015. Biodistribution, clearance, and toxicology of polymeric micelles loaded with 0.9 or 5 nm gold nanoparticles. J Biomed Nanotechnol. 11:1836–1846.
  • Butterworth KT, Coulter JA, Jain S, Forker J, McMahon SJ, Schettino G, Prise KM, Currell FJ, Hirst DG. 2010. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology. 21:295101.
  • Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM, Hong JH. 2012. Irradiation promotes an M2 macrophage phenotype in tumor hypoxia. Front Oncol. 2:89.
  • Christmann M, Diesler K, Majhen D, Steigerwald C, Berte N, Freund H. 2017. Integrin αVβ3 silencing sensitizes malignant glioma cells to temozolomide by suppression of homologous recombination repair. Oncotarget. 8:27754–27771.
  • Corti A, Curnis F. 2011. Isoaspartate-dependent molecular switches for integrin-ligand recognition. J Cell Sci. 124:515–522.
  • Coulter JA, Jain S, Butterworth KT, Taggart LE, Dickson GR, McMahon SJ, Hyland WB, Muir MF, Trainor C, Hounsell AR, et al. 2012. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomedicine. 7:2673–2685.
  • Danhier F, Le Breton A, Préat V. 2012. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 9:2961–2973.
  • Fan CH, Ting CY, Chang YC, Wei KC, Liu HL, Yeh CK. 2015. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery. Acta Biomater. 15:89–101.
  • Fan C-H, Chang E-L, Ting C-Y, Lin Y-C, Liao E-C, Huang C-Y, Chang Y-C, Chan H-L, Wei K-C, Yeh C-K. 2016. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery. Biomaterials. 106:46–57.
  • Fertil B, Dertinger H, Courdi A, Malaise EP. 1984. Mean activation dose: a useful concept for intercomparison of human cell survival curves. Radiat Res. 99:73–64.
  • Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov'yov AV, Prise KM, Golding J, Mason NJ. 2016. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 7:8.
  • Hébert EM, Debouttière PJ, Lepage M, Sanche L, Hunting DJ. 2010. Preferential tumour accumulation of gold nanoparticles, visualised by magnetic resonance imaging: radiosensitisation studies in vivo and in vitro. Int J Radiat Biol. 86:692–700.
  • Her S, Jaffray DA, Allen C. 2017. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. 109:84–101.
  • Heuskin AC, Gallez B, Feron O, Martinive P, Michiels C, Lucas S. 2017. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: are there significant physical effects to enhance the dose delivery? Med Phys. 44:4299–4312.
  • Jain S, Coulter JA, Hounsell AR, Butterworth KT, McMahon SJ, Hyland WB, Muir MF, Dickson GR, Prise KM, Currell FJ, et al. 2011. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 79:531–539.
  • Jeynes JC, Merchant MJ, Spindler A, Wera AC, Kirkby KJ. 2014. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol. 59:6431–6443.
  • Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK. 2010. Therapeutic application of metallic nanoparticles combined with particle-induced X-ray emission effect. Nanotechnology. 21:425102.
  • Kim YH, Jeon J, Hong SH, Rhim WK, Lee YS, Youn H, Chung J-K, Lee MC, Lee DS, Kang KW, Nam J-M. 2011. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated Iodine-125. Small. 7:2052–2060.
  • Kim SR, Kim EH. 2017. Gold nanoparticles as dose-enhancement agent for kilovoltage X-ray therapy of melanoma. Int J Radiat Biol. 93:517–526.
  • Kunjachan S, Detappe A, Kumar R, Ireland T, Cameron L, Biancur DE, Chung J-K, Lee MC, Lee DS, Kang KW, et al. 2015. Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett. 15:7488–7496.
  • Li P, Shi YW, Li BX, Xu WC, Shi ZL, Zhou C, Fu S. 2015. Photo-thermal effect enhances the efficiency of radiotherapy using Arg-Gly-Asp peptides-conjugated gold nanorods that target αvβ3 in melanoma cancer cells. J Nanobiotechnol. 13:52.
  • Li S, Penninckx S, Karmani L, Heuskin AC, Watillon K, Marega R, Zola J, Corvaglia V, Genard G, Gallez B, et al. 2016. LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation. Nanotechnology. 27:455101.
  • Lin Y, McMahon SJ, Scarpelli M, Paganetti H, Schuemann J. 2014. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 59:7675–7689.
  • Lin Y, McMahon SJ, Paganetti H, Schuemann J. 2015. Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys Med Biol. 60:4149–4168.
  • Liu SK, Coackley C, Krause M, Jalali F, Chan N, Bristow RG. 2008. A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiother Oncol. 88:258–268.
  • Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC. 2010. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol. 55:931–945.
  • Mousavi M, Nedaei HA, Khoei S, Eynali S, Khoshgard K, Robatjazi M, Iraji Rad R. 2017. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons. Int J Radiat Biol. 93:214–221.
  • Park HM. 2005. Comparing group means: the T-test and one-way ANOVA using STATA, SAS, and SPSS. http://stat.smmu.edu.cn/DOWNLOAD/ebook/statistics_course.pdf
  • Polf JC, Bronk LF, Driessen WH, Arap W, Pasqualini R, Gillin M. 2011. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett. 98:193702.
  • Poon W, Zhang X, Bekah D, Teodoro JG, Nadeau JL. 2015. Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles. Nanotechnology. 26:285101.
  • Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM. 2017. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nano. 8:2.
  • Saberi A, Shahbazi-Gahrouei D, Abbasian M, Fesharaki M, Baharlouei A, Arab-Bafrani Z. 2017. Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells. Int J Radiat Biol. 93:315–323.
  • Sakagami H, Kishino K, Amano O, Kanda Y, Kunii S, Yokote Y, Oizumi H, Oizumi T. 2009. Cell death induced by nutritional starvation in mouse macrophage-like RAW 264.7 cells. Anticancer Res. 29:343–348.
  • Schrand AM, Schlager JJ, Dai L, Hussain SM. 2010. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc. 5:744–757.
  • Soleymanifard S, Rostami A, Aledavood SA, Matin MM, Sazgarnia A. 2017. Increased radiotoxicity in two cancerous cell lines irradiated by low and high energy photons in the presence of thio-glucose bound gold nanoparticles. Int J Radiat Biol. 93:407–415.
  • Soji T, Murata Y, Ohira A, Nishizono H, Tanaka M, Herbert DC. 1992. Evidence that hepatocytes can phagocytize exogenous substances. Anat Rec. 233:543–554.
  • Song L, Falzone N, Vallis KA. 2016. EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer. Int J Radiat Biol. 92:716–723.
  • Su N, Dang Y, Liang G, Liu G. 2015. Iodine-125-labeled cRGD-gold nanoparticles as tumor-targeted radiosensitizer and imaging agent. Nanoscale Res Lett. 10:160.
  • Taggart LE, McMahon SJ, Butterworth KT, Currell FJ, Schettino G, Prise KM. 2016. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology. 27:215101.
  • Wang SC, Hong JH, Hsueh C, Chiang CS. 2012. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest. 92:151–162.
  • Wang SC, Yu CF, Hong JH, Tsai CS, Chiang CS. 2013. Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One. 8:e69182.
  • Wu JC, Merlino G, Fausto N. 1994. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc Natl Acad Sci USA. 91:674–678.
  • Zhang XD, Luo Z, Chen J, Song S, Yuan X, Shen X, Wang H, Sun Y, Gao K, Zhang L, et al. 2015. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep. 5:8669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.