525
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The sequence preference of gamma radiation-induced DNA damage as determined by a polymerase stop assay

& ORCID Icon
Pages 1613-1626 | Received 06 Jun 2019, Accepted 31 Jul 2019, Published online: 18 Sep 2019

References

  • Adhikary A, Khanduri D, Sevilla MD. 2009. Direct observation of the hole protonation state and hole localization site in DNA-oligomers. J Am Chem Soc. 131(24):8614–8619.
  • Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. 2012. Advances in radiotherapy. BMJ. 345(dec04 1):e7765.
  • Akatsuka S, Toyokuni S. 2012. Genome-wide assessment of oxidatively generated DNA damage. Free Radic Res. 46(4):523–530.
  • Bamatraf M, O'Neill P, Rao B. 2000. OH radical-induced charge migration in oligodeoxynucleotides. J Phys Chem B. 104(3):636–642.
  • Barendsen GW. 1968. Responses of cultured cells, tumours, and normal tissues to radiations of different linear energy transfer. Curr Top Radiat Res. 4:293–356.
  • Barendsen GW, Broerse JJ. 1977. Differences in radiosensitivity of cells from various types of experimental tumors in relation to the RBE of MeV neutrons. Int J Radiat Oncol Biol Phys. 3:211–214.
  • Belli M, Sapora O, Tabocchini MA. 2002. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection. JRR. 43(S):S13–S19.
  • Bellon S, Shikazono N, Cunniffe S, Lomax M, O'Neill P. 2009. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Res. 37(13):4430–4440.
  • Bergeron F, Auvré F, Radicella JP, Ravanat J-L. 2010. HO* radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci USA. 107(12):5528–5533.
  • Boiteux S, Laval J. 1983. Imidazole open ring 7-methylguanine: an inhibitor of DNA synthesis. Biochem Biophys Res Commun. 110(2):552–558.
  • Box HC, Budzinski EE, Dawidzik JB, Wallace JC, Iijima H. 1998. Tandem lesions and other products in X-irradiated DNA oligomers. Radiat Res. 149(5):433–439.
  • Burkhoff AM, Tullius TD. 1987. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell. 48(6):935–943.
  • Cadet J, Douki T, Ravanat J-L. 2008. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res. 41(8):1075–1083.
  • Cadet J, Ravanat J-L, TavernaPorro M, Menoni H, Angelov D. 2012. Oxidatively generated complex DNA damage: Tandem and clustered lesions. Cancer Lett. 327(1–2):5–15.
  • Cadet J, Wagner JR. 2013. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol. 5(2):a012559.
  • Cadet J, Wagner JR. 2014. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences. Arch Biochem Biophys. 557:47–54.
  • Cadet J, Wagner JR. 2016. Radiation-induced damage to cellular DNA: chemical nature and mechanisms of lesion formation. Radiat Phys Chem. 128:54–59.
  • Cadet J, Wagner JR, Shafirovich V, Geacintov NE. 2014. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int J Radiat Biol. 90(6):423–432.
  • Cairns MJ, Carland M, McFadyen WD, Denny WA, Murray V. 2009. The DNA sequence selectivity of maltolato-containing cisplatin analogues in purified plasmid DNA and in intact human cells. J Inorg Biochem. 103(8):1151–1155.
  • Chung LH, Murray V. 2016. The mitochondrial DNA sequence specificity of the anti-tumour drug bleomycin using end-labeled DNA and capillary electrophoresis and a comparison with genome-wide DNA sequencing. J Chromatogr B. 1008:87–97.
  • Demple B, Herman T, Chen DS. 1991. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci USA. 88(24):11450–11454.
  • Ding Y, Fleming AM, Burrows CJ. 2017. Sequencing the mouse genome for the oxidatively modified base 8-Oxo-7,8-dihydroguanine by OG-Seq. J Am Chem Soc. 139(7):2569–2572.
  • Dizdaroglu M, Jaruga P. 2012. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 46(4):382–419.
  • Doetsch PW, Henner WD, Cunningham RP, Toney JH, Helland D. 1987. A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Mol Cell Biol. 7(1):26–32.
  • Endlich B, Linn S. 1985. The DNA restriction endonuclease of Escherichia coli B. II. Further studies of the structure of DNA intermediates and products. J Biol Chem. 260(9):5729–5738.
  • Fleming AM, Burrows CJ. 2017. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med. 107:35–52.
  • Franchet-Beuzit J, Spotheim-Maurizot M, Sabattier R, Blazy-Baudras B, Charlier M. 1993. Radiolytic footprinting. Beta rays, gamma photons, and fast neutrons probe DNA-protein interactions. Biochemistry. 32(8):2104–2110.
  • Frelon S, Douki T, Ravanat JL, Pouget JP, Tornabene C, Cadet J. 2000. High-performance liquid chromatography–tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem Res Toxicol. 13(10):1002–1010.
  • Friedland W, Dingfelder M, Kundrát P, Jacob P. 2011. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Fund Mol Mech Mut. 711(1–2):28–40.
  • Fuciarelli A, Wegher B, Blakely W, Dizdaroglu M. 1990. Yields of radiation-induced base products in DNA: effects of DNA conformation and gassing conditions. Int J Radiat Biol. 58(3):397–415.
  • Fung H, Demple B. 2011. Distinct roles of Ape1 protein in the repair of DNA damage induced by ionizing radiation or bleomycin. J Biol Chem. 286(7):4968–4977.
  • Gautam SD, Hardie ME, Murray V. 2018. The sequence preference of gamma radiation-induced damage in end-labeled DNA after heat treatment. Radiat Res. 189(3):238–250.
  • Georgakilas AG, Bennett PV, Wilson IID, Sutherland BM. 2004. Processing of bistranded abasic DNA clusters in γ-irradiated human hematopoietic cells. Nucleic Acids Res. 32(18):5609–5620.
  • Giese B. 2002. Long-distance electron transfer through DNA. Annu Rev Biochem. 71:51–70.
  • Goodhead DT. 1994. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 65(1):7–17.
  • Gulston M. 2002. Clustered DNA damage induced by gamma radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites. Nucleic Acids Res. 30(15):3464–3472.
  • Guschlbauer W, Duplaa A-M, Guy A, Téoule R, Fazakerley GV. 1991. Structure and in vitro replication of DNA templates containing 7,8-dihydro-8-oxoadenine. Nucleic Acids Res. 19(8):1753–1758.
  • Hall EJ, Giaccia AJ. 2006. Radiobiology for the radiologist. Philadelphia: Lippincott, Williams & Wilkins [Database].
  • Hardie ME, Gautam SD, Murray V. 2019. The genome-wide sequence preference of ionising radiation-induced cleavage in human DNA. Mol Biol Rep. 46(4):3731.
  • Hardie ME, Kava HW, Murray V. 2016. Cisplatin analogues with an increased interaction with DNA: prospects for therapy. CPD. 22(44):6645–6665.
  • Hardie ME, Murray V. 2018. The sequence preference of DNA cleavage by T4 Endonuclease VII. Biochimie. 146:1–13.
  • Häring M, Rüdiger H, Demple B, Boiteux S, Epe B. 1994. Recognition of oxidized abasic sites by repair endonucleases. Nucleic Acids Res. 22(11):2010–2015.
  • Helland D, Doetsch P, Haseltine W. 1986. Substrate specificity of a mammalian DNA repair endonuclease that recognizes oxidative base damage. Mol Cell Biol. 6(6):1983–1990.
  • Henner WD, Grunberg SM, Haseltine WA. 1982. Sites and structure of gamma radiation-induced DNA strand breaks. J Biol Chem. 257(19):11750–11754.
  • Henner WD, Grunberg SM, Haseltine WA. 1983a. Enzyme action at 3′ termini of ionizing radiation-induced DNA strand breaks. J Biol Chem. 258(24):15198–15205.
  • Henner WD, Rodriguez LO, Hecht SM, Haseltine WA. 1983b. Gamma Ray induced deoxyribonucleic acid strand breaks. 3′ Glycolate termini. J Biol Chem. 258:711–713.
  • Hentosh P, Henner WD, Reynolds RJ. 1985. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease. Radiat Res. 102(1):119–129.
  • Hickerson RP, Chepanoske CL, Williams SD, David SS, Burrows CJ. 1999. Mechanism-based DNA − protein cross-linking of MutY via oxidation of 8-oxoguanosine. J Am Chem Soc. 121(42):9901–9902.
  • Holley WR, Chatterjee A. 1996. Clusters of DNA damage induced by ionizing radiation: formation of short DNA fragments.1. Theoretical modeling. Radiat Res. 145(2):188–199.
  • Isabelle V, Prevost C, Spotheim-Maurizot M, Sabattier R, Charlier M. 1995. Radiation-induced damages in single- and double-stranded DNA. Int J Radiat Biol. 67(2):169–176.
  • Jackson SP, Bartek J. 2009. The DNA-damage response in human biology and disease. Nature. 461(7267):1071–1078.
  • Joiner MC, van der Kogel A. 2009. Basic clinical radiobiology. 4th ed. Abingdon: Taylor & Francis.
  • Kumar A, Sevilla MD. 2006. Photoexcitation of dinucleoside radical cations: a time-dependent density functional study. J Phys Chem B. 110(47):24181–24188.
  • Kumar A, Sevilla MD. 2011. Density functional theory studies of the extent of hole delocalization in one-electron oxidized adenine and guanine base stacks. J Phys Chem B. 115(17):4990–5000.
  • Lee YA, Durandin A, Dedon PC, Geacintov NE, Shafirovich V. 2008. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions: relationship between kinetics and distribution of alkali-labile lesions. J Phys Chem B. 112(6):1834–1844.
  • Lomax ME, Folkes LK, O'Neill P. 2013. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol. 25(10):578–585.
  • Magnander K, Elmroth K. 2012. Biological consequences of formation and repair of complex DNA damage. Cancer Lett. 327(1–2):90–96.
  • Magnander K, Hultborn R, Claesson K, Elmroth K. 2010. Clustered DNA damage in irradiated human diploid fibroblasts: influence of chromatin organization. Radiat Res. 173(3):272–282.
  • Meggers E, Kusch D, Spichty M, Wille U, Giese B. 1998. Electron transfer through DNA in the course of radical-induced strand cleavage. Angew Chem Int Ed Engl. 37(4):460–462.
  • Milligan JR, Aguilera JA, Nguyen TT, Paglinawan RA, Ward JF. 2000. DNA strand-break yields after post-irradiation incubation with base excision repair endonucleases implicate hydroxyl radical pairs in double-strand break formation. Int J Radiat Biol. 76(11):1475–1483.
  • Morgan WF. 2003a. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res. 159(5):567–580.
  • Morgan WF. 2003b. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res. 159(5):581–596.
  • Murray V, Motyka H, England PR, Wickham G, Lee HH, Denny WA, McFadyen WD. 1992. The use of Taq DNA polymerase to determine the sequence specificity of DNA damage caused by cis-diamminedichloroplatinum(II), acridine-tethered platinum(II) diammine complexes or two analogues. J Biol Chem. 267(26):18805–18809.
  • Murray V, Nguyen TV, Chen JK. 2012. The use of automated sequencing techniques to investigate the sequence selectivity of DNA-damaging agents. Chem Biol Drug Des. 80(1):1–8.
  • Nakamura J, Swenberg JA. 1999. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59:2522–2526.
  • Nguyen HTQ, Murray V. 2012a. The DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. J Biol Inorg Chem. 17(8):1209–1215.
  • Nguyen TV, Chen JK, Murray V. 2013. Bleomycin DNA damage: Anomalous mobility of 3′-phosphoglycolate termini in an automated capillary DNA sequencer. J Chromatogr B. 913:113–122.
  • Nguyen TV, Murray V. 2012b. Human telomeric DNA sequences are a major target for the antitumour drug bleomycin. J Biol Inorg Chem. 17(1):1–9.
  • Nguyen TV, Murray V. 2013. The electrophoretic mobility of DNA fragments differing by a single 3′-terminal nucleotide in an automated capillary DNA sequencer. Biomed Chromatogr. 27(3):390–395.
  • O'Connor TR, Boiteux S, Laval J. 1988. Ring-opened 7-methylguanine residues in DNA are a block to in vitro DNA synthesis. Nucleic Acids Res. 16:5879–5894.
  • Park J, Park JW, Oh H, Maria FS, Kang J, Tian X. 2016. Gene-specific assessment of guanine oxidation as an epigenetic modulator for cardiac specification of mouse embryonic stem cells. PloS One. 11(6):e0155792.
  • Paul M, Murray V. 2012. Use of an automated capillary DNA sequencer to investigate the interaction of cisplatin with telomeric DNA sequences. Biomed Chromatogr. 26(3):350–354.
  • Pierce DA, Preston DL. 2000. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res. 154(2):178–186.
  • Pinto AL, Lippard SJ. 1985. Sequence-dependent termination of in vitro DNA synthesis by cis- and trans-diamminedichloroplatinum (II). Proc Natl Acad Sci USA. 82(14):4616–4619.
  • Pogozelski WK, Mcneese TJ, Tullius TD. 1995. What species is responsible for strand scission in the reaction of [Fe(II)EDTA](2-) and H2O2 with DNA. J Am Chem Soc. 117(24):6428–6433.
  • Ponti M, Forrow SM, Souhami RL, D'lncalci M, Hartley JA. 1991. Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase. Nucleic Acids Res. 19(11):2929–2933.
  • Pouget J, Frelon S, Ravanat J, Testard I, Odin F, Cadet J. 2002. Formation of modified DNA bases in cells exposed either to gamma radiation or to high-LET particles. Radiat Res. 157(5):589–595.
  • Prat F, Houk K, Foote CS. 1998. Effect of guanine stacking on the oxidation of 8-oxoguanine in B-DNA. J Am Chem Soc. 120(4):845–846.
  • Prise KM, Pullar CH, Michael BD. 1999. A study of endonuclease III-sensitive sites in irradiated DNA: detection of alpha-particle-induced oxidative damage. Carcinogenesis. 20(5):905–909.
  • Roldán-Arjona T, Ariza RR. 2009. Repair and tolerance of oxidative DNA damage in plants. Mutat Res Rev Mutat Res. 681(2–3):169–179.
  • Rydberg B. 2000. Radiation-induced heat-labile sites that convert into DNA double-strand breaks. Radiat Res. 153(6):805–812.
  • Sahbani SK, Girouard S, Cloutier P, Sanche L, Hunting DJ. 2014. The relative contributions of DNA strand breaks, base damage and clustered lesions to the loss of DNA functionality induced by ionizing radiation. Radiat Res. 181(1):99–110.
  • Saito I, Takayama M, Sugiyama H, Nakatani K, Tsuchida A, Yamamoto M. 1995. Photoinduced DNA cleavage via electron transfer: demonstration that guanine residues located 5′ to guanine are the most electron-donating sites. J Am Chem Soc. 117(23):6406–6407.
  • Senthilkumar K, Grozema F, Guerra CF, Bickelhaupt F, Siebbeles L. 2003. Mapping the sites for selective oxidation of guanines in DNA. J Am Chem Soc. 125(45):13658–13659.
  • Shibutani S, Takeshita M, Grollman AP. 1991. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 349(6308):431.
  • Shukla LI, Adhikary A, Pazdro R, Becker D, Sevilla MD. 2004. Formation of 8-oxo-7,8-dihydroguanine-radicals in gamma-irradiated DNA by multiple one-electron oxidations. Nucleic Acids Res. 32(22):6565–6574.
  • Sikorsky JA, Primerano DA, Fenger TW, Denvir J. 2007. DNA damage reduces Taq DNA polymerase fidelity and PCR amplification efficiency. Biochem Biophys Res Commun. 355(2):431–437.
  • Steenken S, Jovanovic SV. 1997. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc. 119(3):617–618.
  • Stemp E, Arkin M, Barton J. 1997. Oxidation of guanine in DNA by Ru (phen) 2 (dppz) 3+ using the flash-quench technique. J Am Chem Soc. 119(12):2921–2925.
  • Sugiyama H, Saito I. 1996. Theoretical studies of GG-specific photocleavage of DNA via electron transfer: significant lowering of ionization potential and 5 ‘-localization of HOMO of stacked GG bases in B-Form DNA. J Am Chem Soc. 118(30):7063–7068.
  • Sutherland BM, Bennett PV, Cintron NS, Guida P, Laval J. 2003. Low levels of endogenous oxidative damage cluster levels in unirradiated viral and human DNAs. Free Radic Biol Med. 35(5):495–503.
  • Sutherland BM, Bennett PV, Sidorkina O, Laval J. 2000. Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks. Biochemistry. 39(27):8026–8031.
  • Sutherland BM, Bennett PV, Sutherland JC, Laval J. 2002. Clustered DNA damages induced by X rays in human cells. Radiat Res. 157(6):611–616.
  • Sutherland BM, Bennett PV, Weinert E, Sidorkina O, Laval J. 2001. Frequencies and relative levels of clustered damages in DNA exposed to gamma rays in radioquenching vs. nonradioquenching conditions. Environ Mol Mutagen. 38(2–3):159–165.
  • Sy C, Savoye M, Begusova V, Michalik M, Charlier M, Spotheim-Maurizot D. 1997. Sequence-dependent variations of DNA structure modulate radiation-induced strand breakage. Int J Radiat Biol. 72(2):147–155.
  • Takeshita M, Chang CN, Johnson F, Will S, Grollman AP. 1987. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J Biol Chem. 262(21):10171–10179.
  • Tannock I. 2005. The basic science of oncology. New York: McGraw-Hill Education.
  • Téoule R. 1987. Radiation-induced DNA damage and its repair. Int J Radiat Biol Relat Stud Phys Chem Med. 51(4):573–589.
  • Tudek B, Boiteux S, Laval J. 1992. Biological properties of imidazole ring-opened N7-methylguanine in M13mp18 phage DNA. Nucleic Acids Res. 20(12):3079–3084.
  • Voityuk AA. 2005. Are radical cation states delocalized over GG and GGG hole traps in DNA? J Phys Chem B. 109(21):10793–10796.
  • von Sonntag C. 2006. Free-radical-induced DNA damage and its repair. A chemical perspective. Heidelberg: Springer.
  • Wallace SS. 1998. Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res. 150(5):S60–S79.
  • Ward JF, Kuo I. 1976. Strand breaks, base release, and postirradiation changes in DNA γ-irradiated in dilute aqueous solution. Radiat Res. 66(3):485–498.
  • Weinfeld M, Soderlind K. 1991. Phosphorus-32-postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry. 30(4):1091–1097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.