372
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Combined radiation strategies for novel and enhanced cancer treatment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1087-1103 | Received 20 Jan 2020, Accepted 26 May 2020, Published online: 15 Jul 2020

References

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, et al. 2011. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 61:250–281.
  • Alizadeh E, Orlando TM, Sanche L. 2015. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu Rev Phys Chem. 66:379–398.
  • Ando K, Goodhead DT. 2016. Dependence and independence of survival parameters on linear energy transfer in cells and tissues. J Radiat Res. 57:596–606.
  • Ara G, Varshney A, Ha CS, Oseroff AR, Herman TS, Teicher BA. 1992. Multiple modality treatment of carcinoma cells with Pt(Rh-123)2 plus x-ray plus light. Photochem Photobiol. 55:561–567.
  • Baronzio G, Parmar G, Ballerini M, Szasz A, Baronzio M, Cassutti V. 2014. A brief overview of hyperthermia in cancer treatment. J Integr Oncol. 03:115.
  • Barua S, Mitragotri S. 2014. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 9:223–243.
  • Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. 2014. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 1:24.
  • Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. 2008. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 26:612–621.
  • Begg AC, Sheldon PW, Foster JL. 1974. Demonstration of radiosensitization of hypoxic cells in solid tumours by metronidazole. Br J Radiol. 47:399–404.
  • Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ. 2016. Hyperthermia: how can it be used? Oman Med J. 31:89–97.
  • Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A. 2019. Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev. 387:299–324.
  • Bhana S, O'Connor R, Johnson J, Ziebarth JD, Henderson L, Huang X. 2016. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy. J Colloid Interface Sci. 469:8–16.
  • Blanco E, Shen H, Ferrari M. 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 33:941–951.
  • Breuer H, Smit BJ. 2000. Interaction of protons with matter BT – proton therapy and radiosurgery. In: Breuer H, Smit BJ, editors. Berlin: Springer; p. 21–53.
  • Burnet NG, Thomas SJ, Burton KE, Jefferies SJ. 2004. Defining the tumour and target volumes for radiotherapy. Cancer Imaging. 4:153–161.
  • Butterworth KT, McMahon SJ, Currell FJ, Prise KM. 2012. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 4:4830–4838.
  • Cabral RM, Baptista PV. 2013. The chemistry and biology of gold nanoparticle-mediated photothermal therapy: promises and challenges. Nano Life. 03:1330001.
  • Caldorera-Moore M, Guimard N, Shi L, Roy K. 2010. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv. 7:479–495.
  • Camerin M, Magaraggia M, Soncin M, Jori G, Moreno M, Chambrier I, Cook MJ, Russell DA. 2010. The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer. 46:1910–1918.
  • Castano AP, Demidova TN, Hamblin MR. 2004. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 1:279–293.
  • Catton C, Lukka H. 2019. The evolution of fractionated prostate cancer radiotherapy. Lancet. (London, England). 394:361–362.
  • Ceglia L, Toni R. 2018. Chapter 113 – Vitamin D and muscle performance in athletes. In: Feldman D, editor. Vitamin D. 4th ed. London: Academic Press; p. 1121–1130.
  • Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HHW, Wu CL. 2008. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 99:1479–1484.
  • Chatterjee DK, Fong LS, Zhang Y. 2008. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 60:1627–1637.
  • Chaudhary P, Marshall TI, Currell FJ, Kacperek A, Schettino G, Prise KM. 2016. Variations in the processing of DNA double-strand breaks along 60-MeV therapeutic proton beams. Int J Radiat Oncol Biol Phys. 95:86–94.
  • Chen H, Liu Z, Li S, Su C, Qiu X, Zhong H, Guo Z. 2016. Fabrication of graphene and AuNP Core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy. Theranostics. 6:1096–1104.
  • Chen W, Zhang J. 2006. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol. 6:1159–1166.
  • Cheong SK, Krishnan S, Cho SH. 2009. Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med Phys. 36:4664–4671.
  • Chithrani DB. 2010. Nanoparticles for improved therapeutics and imaging in cancer therapy. Recent Pat Nanotechnol. 4:171–180.
  • Chithrani DB, Chan W. 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7:1542–1550.
  • Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, Hill RP, Jaffray DA. 2010. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 173:719–728.
  • Chompoosor A, Saha K, Ghosh PS, Macarthy DJ, Miranda OR, Zhu ZJ, Arcaro KF, Rotello VM. 2010. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small. 6:2246–2249.
  • Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S, Beck M, Nadobny J, Budach V, Wust P, et al. 2015. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia. 31:609–614.
  • Colasanti A, Kisslinger A, Quarto M, Riccio P. 2004. Combined effects of radiotherapy and photodynamic therapy on an in vitro human prostate model. Acta Biochim Pol. 51:1039–1046.
  • Cooper DR, Bekah D, Nadeau JL. 2014. Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem. 2:86.
  • Daneshvar F, Salehi F, Karimi M, Vais RD, Mosleh-Shirazi MA, Sattarahmady N. 2020. Combined X-ray radiotherapy and laser photothermal therapy of melanoma cancer cells using dual-sensitization of platinum nanoparticles. J Photochem Photobiol B Biol. 203:111737.
  • Denekamp J. 1982. Biological methods for studying radiosensitization. In: Breccia Α, Cavalleri Β, Adams GE, editors. Nitroimidazoles: Chemistry, Pharmacology and Clinical Application. Vol. 43. Boston (MA): Springer; p. 119–142.
  • Dimitriou N, Pavlopoulou A, Tremi I, Kouloulias V, Tsigaridas G, Georgakilas A. 2019. Prediction of gold nanoparticle and microwave-induced hyperthermia effects on tumor control via a simulation approach. Nanomaterials. 9:167.
  • Dini S, Binder BJ, Fischer SC, Mattheyer C, Schmitz A, Stelzer EHK, Bean NG, Green J. 2016. Identifying the necrotic zone boundary in tumour spheroids with pair-correlation functions. J R Soc Interface. 13:20160649.
  • Dosanjh M, Amaldi U, Mayer R, Poetter R; ENLIGHT Network. 2018. ENLIGHT: European network for Light ion hadron therapy. Radiother Oncol. 128:76–82.
  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. 1998. Photodynamic therapy. J Natl Cancer Inst. 90:889–905.
  • Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. 1978. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38:2628–2635.
  • Estelrich J, Busquets M. 2018. Iron oxide nanoparticles in photothermal therapy. Molecules. 23:1567.
  • Fan W, Yung B, Huang P, Chen X. 2017. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 117:13566–13638.
  • Gao L, Fei J, Zhao J, Li H, Cui Y, Li J. 2012. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano. 6(9):8030–8040.
  • Garcia Calavia P, Marin MJ, Chambrier I, Cook MJ, Russell DA. 2018. Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle-photosensitiser conjugates. Photochem Photobiol Sci. 17(3):281–289.
  • Gardikis K, Tsimplouli C, Dimas K, Micha-Screttas M, Demetzos C. 2010. New chimeric advanced Drug Delivery nano Systems (chi-aDDnSs) as doxorubicin carriers. Int J Pharm. 402:231–237.
  • Ghoodarzi R, Changizi V, Montazerabadi AR, Eyvazzadaeh N. 2016. Assessing of integration of ionizing radiation with Radachlorin-PDT on MCF-7 breast cancer cell treatment. Lasers Med Sci. 31:213–219.
  • Gluckman JL, Portugal LG. 1995. Photodynamic therapy for cancer of the head and neck. In: Hong WK, Weber RS, editors. Head and Neck Cancer – Basic and Clinical Aspects. New York: Springer-Science + Business Media, LLC; p. 159–159.
  • Greenspan HP. 1972. Models for the growth of a solid tumor by diffusion. Stud Appl Math. 51:317–340.
  • Grigalavicius M, Mastrangelopoulou M, Berg K, Arous D, Ménard M, Raabe-Henriksen T, Brondz E, Siem S, Görgen A, Edin NFJ, et al. 2019. Proton-dynamic therapy following photosensitiser activation by accelerated protons demonstrated through fluorescence and singlet oxygen production. Nat Commun. 10:3986.
  • Hada M, Georgakilas AG. 2008. Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res. 49:203–210.
  • Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. 2010. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 55:3045–3059.
  • Harriss-Phillips WM, Bezak E, Yeoh E. 2012. The HYP-RT hypoxic tumour radiotherapy algorithm and accelerated repopulation dose per fraction study. Comput Math Methods Med. 2012:363564.
  • Henderson BW, Gollnick SO, Snyder JW, Busch TM, Kousis PC, Cheney RT, Morgan J. 2004. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 64:2120–2126.
  • Herman AB, Savage VM, West GB. 2011. A quantitative theory of solid tumor growth, metabolic rate and vascularization. PLoS One. 6:e22973.
  • Holley AK, Miao L, St Clair DK, St Clair WH. 2014. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal. 20:1567–1589.
  • Horan AD, Giandomenico AR, Koch CJ. 1999. Effect of oxygen on radiation-induced DNA damage in isolated nuclei. Radiat Res. 152:144–153.
  • Hu ZI, McArthur HL, Ho AY. 2017. The abscopal effect of radiation therapy: what is it and how can we use it in breast cancer? Curr Breast Cancer Rep. 9:45–51.
  • Huang X, El-Sayed MA. 2010. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 1:13–28.
  • Huang X, El-Sayed MA. 2011. Plasmonic photo-thermal therapy (PPTT). Alexandria J Med. 47:1–9.
  • Huang X, El-Sayed I, Qian W, El-Sayed MA. 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 128:2115–2120.
  • Hunter KW, Crawford NPS, Alsarraj J. 2008. Mechanisms of metastasis. Breast Cancer Res. 10:S2.
  • Jang B, Park J-Y, Tung C-H, Kim I-H, Choi Y. 2011. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano. 5(2):1086–1094.
  • Jain KK. 2017. The handbook of nanomedicine. 3rd ed. New York: Springer Science + Business Media LLC.
  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 9:1050–1074.
  • Jha S, Sharma PK, Malviya R. 2016. Hyperthermia: role and risk factor for cancer treatment. Achiev Life Sci. 10:161–167.
  • Juzenas P, Chen W, Sun YP, Coelho MAN, Generalov R, Generalova N, Christensen IL. 2008. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev. 60:1600–1614.
  • Kareliotis G, Liossi S, Makropoulou M. 2018. Assessment of singlet oxygen dosimetry concepts in photodynamic therapy through computational modeling. Photodiagn Photodyn Ther. 21:224–233.
  • Kareliotis G, Papachristou M, Priftakis D, Datseris I, Makropoulou M. 2019. Computational study of necrotic areas in rat liver tissue treated with photodynamic therapy. J Photochem Photobiol B, Biol. 192:40–48.
  • Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, Rumyantseva V, Shilov I, Ryabova A, Loshchenov V, et al. 2011. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano. 5(9):7077–7089.
  • Kim MM, Ghogare AA, Greer A, Zhu TC. 2017. On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling. Phys Med Biol. 62:R1–R48.
  • Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE, Allen KJ, Duffy E, Hoang JK, Chang Z, Yoo DS, et al. 2015. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 91:100–108.
  • Komatsu T, Nakamura K, Okumura Y, Konishi K. 2018. Optimal method of gold nanoparticle administration in melanoma-bearing mice. Exp Ther Med. 15(3):2994–2999.
  • Konan YN, Gurny R, Allemann E. 2002. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B, Biol. 66:89–106.
  • Kouloulias V, Triantopoulou S, Uzunoglou N, Pistevou-Gompaki K, Barich A, Zygogianni A, Kyrgias G, Kardamakis D, Pectasidis D, Kouvaris J; Greek Society of Hyperthermic Oncology. 2015. Hyperthermia is now included in the NCCN Clinical Practice Guidelines for breast cancer recurrences: an analysis of existing data. Breast Care (Basel). 10:109–116.
  • Lam S, Kostashuk EC, Coy EP, Laukkanen E, LeRiche JC, Mueller HA, Szasz IJ. 1987. A randomized comparative study of the safety and efficacy of photodynamic therapy using Photofrin II combined with palliative radiotherapy versus palliative radiotherapy alone in patients with inoperable obstructive non-small cell bronchogenic carcinoma. Photochem Photobiol. 46:893–897.
  • Laser H. 1954. The oxygen-effect in ionizing irradiation. Nature. 174:753.
  • Ledingham WDK, Bolton RP, Shikazono N, Ma CCM. 2014. Towards laser driven hadron cancer radiotherapy: a review of progress. Appl Sci. 4:402–443.
  • Leopold LF, Tódor IS, Diaconeasa Z, Rugină D, Ştefancu A, Leopold N, Coman C. 2017. Assessment of PEG and BSA-PEG gold nanoparticles cellular interaction. Colloids Surf A Physicochem Eng Asp. 532:70–76.
  • Li S, Bouchy S, Penninckx S, Marega R, Fichera O, Gallez B, Feron O, Martinive P, Heuskin AC, Michiels C, et al. 2019. Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine (Lond). 14:317–333.
  • Li X, Hu Z, Ma J, Wang X, Zhang Y, Wang W, Yuan Z. 2018. The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf B Biointerfaces. 167:260–266.
  • Li P, Shi YW, Li BX, Xu WC, Shi ZL, Zhou C, Fu S. 2015. Photo-thermal effect enhances the efficiency of radiotherapy using Arg-Gly-Asp peptides-conjugated gold nanorods that target αvβ3 in melanoma cancer cells. J Nanobiotechnol. 13:52.
  • Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, et al. 2013. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano. 7(6):5320–5329.
  • Loos M. 2015. Chapter 1 – Nanoscience and nanotechnology. In: Loos M, editor. Carbon nanotube reinforced composites. Oxford: William Andrew Publishing; p. 1–36.
  • López-Marín N, Mulet R, Rodríguez R. 2018. Photodynamic therapy: toward a systemic computational model. J Photochem Photobiol B, Biol. 189:201–213.
  • Lorat Y, Timm S, Jakob B, Taucher-Scholz G, Rübe CE. 2016. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother Oncol. 121:154–161.
  • Lucena SR, Salazar N, Gracia-Cazana T, Zamarron A, Gonzalez S, Juarranz A, Gilaberte Y. 2015. Combined treatments with photodynamic therapy for non-melanoma skin cancer. Int J Mol Sci. 16:25912–25933.
  • Lucky SS, Soo KC, Zhang Y. 2015. Nanoparticles in photodynamic therapy. Chem Rev. 115:1990–2042.
  • Luksiene Z, Kalvelyte A, Supino R. 1999. On the combination of photodynamic therapy with ionizing radiation. J Photochem Photobiol B. 52:35–42.
  • Ma N, Jiang YW, Zhang X, Wu H, Myers JN, Liu P, Jin H, Gu N, He N, Wu FG, et al. 2016. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl Mater Interfaces. 8:28480–28494.
  • Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang X-J. 2011. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 5(11):8629–8639.
  • Makropoulou M. 2016. Cancer and electromagnetic radiation therapy: Quo Vadis? Physics. http://arxiv.org/abs/1602.02077
  • McMahon SJ, Mendenhall MH, Jain S, Currell F. 2008. Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol. 53:5635–5651.
  • McQuaid HN, Muir MF, Taggart LE, McMahon SJ, Coulter JA, Hyland WB, Jain S, Butterworth KT, Schettino G, Prise KM, et al. 2016. Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep. 6:19442
  • Miao L, Huang L. 2015. Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res. 166:193–226.
  • Mole RH. 1953. Whole body irradiation; radiobiology or medicine? Br J Radiol. 26:234–241.
  • Montazerabadi AR, Sazgarnia A, Bahreyni-Toosi MH, Ahmadi A, Aledavood A. 2012. The effects of combined treatment with ionizing radiation and indocyanine green-mediated photodynamic therapy on breast cancer cells. J Photochem Photobiol B, Biol. 109:42–49.
  • Mousavie Anijdan SH, Mahdavi SR, Shirazi A, Zarrinfard MA, Hajati J. 2013. Megavoltage X-ray dose enhancement with gold nanoparticles in tumor bearing mice. Int J Mol Cell Med. 2:118–123.
  • Muz B, de la Puente P, Azab F, Azab AK. 2015. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ). 3:83–92.
  • Nagy-Simon T, Potara M, Craciun AM, Licarete E, Astilean S. 2018. IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging. J Colloid Interface Sci. 517:239–250.
  • Newhauser WD, Zhang R. 2015. The physics of proton therapy. Phys Med Biol. 60:R155–R209.
  • Ortmann B, Druker J, Rocha S. 2014. Cell cycle progression in response to oxygen levels. Cell Mol Life Sci. 71:3569–3582.
  • Papagiannaros A, Dimas K, Papaioannou GT, Demetzos C. 2005. Doxorubicin-PAMAM dendrimer complex attached to liposomes: cytotoxic studies against human cancer cell lines. Int J Pharm. 302:29–38.
  • Park YS, Liz-Marzan LM, Kasuya A, Kobayashi Y, Nagao D, Konno M, Mamykin S, Dmytruk A, Takeda M, Ohuchi N. 2006. X-ray absorption of gold nanoparticles with thin silica shell. J Nanosci Nanotechnol. 6:3503–3506.
  • Park J, Park J, Ju EJ, Park SS, Choi J, Lee JH, Lee KJ, Shin SH, Ko EJ, Park I, et al. 2015. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J Control Release. 207:77–85.
  • Pass HI. 1993. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst. 85:443–456.
  • Pfuhl T, Horst F, Schuy C, Weber U. 2018. Dose build-up effects induced by delta electrons and target fragments in proton Bragg curves-measurements and simulations. Phys Med Biol. 63:175002.
  • Phung DC, Nguyen HT, Phuong Tran TT, Jin SG, Yong CS, Truong DH, Tran TH, Kim JO. 2019. Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J Pharm Investig. 49:519–526.
  • Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP. 2003. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 84:4023–4032.
  • Podgorsak EB. 2010. Radiation physics for medical physicists. Berlin: Springer.
  • Pogue BW, O'Hara JA, Demidenko E, Wilmot CM, Goodwin IA, Chen B, Swartz HM, Hasan T. 2003. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res. 63:1025–1033.
  • Pustovalov VK, Smetannikov AS, Zharov VP. 2008. Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys Lett. 5:775–792.
  • Ramakrishnan N, Clay ME, Friedman LR, Antunez AR, Oleinick NL. 1990. Post-treatment interactions of photodynamic and radiation-induced cytotoxic lesions. Photochem Photobiol. 52:555–559.
  • Rice SR, Li YR, Busch TM, Kim MM, McNulty S, Dimofte A, Zhu TC, Cengel KA, Simone CB. 2019. A novel prospective study assessing the combination of photodynamic therapy and proton radiation therapy: safety and outcomes when treating malignant pleural mesothelioma. Photochem Photobiol. 95:411–418.
  • Roa DE, Schiffner DC, Zhang J, Dietrich SN, Kuo JV, Wong J, Ramsinghani NS, Al-Ghazi M. 2012. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets. Med Dosim. 37:257–264.
  • Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM. 2017. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol. 8:2.
  • Rossi M, Boman E, Kapanen M. 2019. Contralateral tissue sparing in lymph node-positive breast cancer radiotherapy with VMAT technique. Med Dosim. 44:117–121.
  • Royce TJ, Qureshi MM, Truong MT. 2018. Radiotherapy utilization and fractionation patterns during the first course of cancer treatment in the United States from 2004 to 2014. J Am Coll Radiol. 15:1558–1564.
  • Rycaj K, Tang DG. 2014. Cancer stem cells and radioresistance. Int J Radiat Biol. 90:615–621.
  • Samia AC, Chen X, Burda C. 2003. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 125:15736–15737.
  • Sazgarnia A, Montazerabadi AR, Bahreyni-Toosi MH, Ahmadi A, Aledavood A. 2013. In vitro survival of MCF-7 breast cancer cells following combined treatment with ionizing radiation and mitoxantrone-mediated photodynamic therapy. Photodiagn Photodyn Ther. 10:72–78.
  • Schmitz A, Fischer SC, Mattheyer C, Pampaloni F, Stelzer E. 2017. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids. Sci Rep. 7:43693.
  • Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ, Sridhar S, Krishnan S. 2016. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys. 94:189–205.
  • Schulz A, Meyer F, Dubrovska A, Borgmann K. 2019. Cancer stem cells andrRadioresistance: DNA repair and beyond. Cancers (Basel). 11:862.
  • Schwartz S, Absolon K, Vermund H. 1955. Some relationships of porphyrins, x-rays, and tumors. Bull Univ Minn Hosp. 27:7–8.
  • Schwartz S, Keprios M, Modelevsky J, Freyholtz H, Walters R, Larson L. 1978. Modification of radiosensitivity by porphyrins: studies of tumors and other systems. Berlin: Springer; p. 227–235.
  • Seifert G, Budach V, Keilholz U, Wust P, Eggert A, Ghadjar P. 2016. Regional hyperthermia combined with chemotherapy in paediatric, adolescent and young adult patients: current and future perspectives. Radiat Oncol. 11:65.
  • Seo S-H, Kim B-M, Joe A, Han H-W, Chen X, Cheng Z, Jang E-S. 2014. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials. 35(10):3309–3318.
  • Serafetinides AA, Makropoulou M. 2019. Towards bridging non-ionizing, ultra intense, laser radiation and ionizing radiation in cancer therapy. In: Proceedings of the 20th International Conference and School on Quantum Electronics: Laser Physics and Applications. Vol. 11047. Nessebar (Bulgaria): SPIE.
  • Shang L, Nienhaus K, Nienhaus GU. 2014. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 12:5.
  • Shopova M, Graschew G, Tzanov T. 1987. Effect of acute hypoxia on photodynamic reactions in normal tissues. Laser Med Sci. 2:91–93.
  • Singh R, Dumlupinar G, Andersson-Engels S, Melgar S. 2019. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int J Nanomedicine. 14:1027–1038.
  • Soderlund H, Mousavi M, Liu H, Andersson-Engels S. 2015. Increasing depth penetration in biological tissue imaging using 808-nm excited Nd3+/Yb3+/Er3+-doped upconverting nanoparticles. J Biomed Opt. 20:86008.
  • Spyratou E, Makropoulou M, Efstathopoulos EP, Georgakilas AG, Sihver L. 2017. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers (Basel). 9:173.
  • Spyratou E, Makropoulou M, Mourelatou EA, Demetzos C. 2012. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy. Cancer Lett. 327:111–122.
  • Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ. 2011. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 176:587–602.
  • Sun Q, You Q, Pang X, Tan X, Wang J, Liu L, Guo F, Tan F, Li N. 2017. A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials. 122:188–200.
  • Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. 2011. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci. 10(5):822–831.
  • Suh JH. 2010. Stereotactic radiosurgery for the management of brain metastases. N Engl J Med. 362:1119–1127.
  • Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. 2019. Gold nanoparticles in cancer treatment. Mol Pharm. 16:1–23.
  • Taghibakhshi A, Barisam M, Saidi MS, Kashaninejad N, Nguyen NT. 2019. Three-dimensional modeling of avascular tumor growth in both static and dynamic culture platforms. Micromachines. 10:580.
  • Taylor A, Powell M. 2004. Intensity-modulated radiotherapy-what is it? Cancer Imaging. 4:68–73.
  • Tommasino F, Durante M. 2015. Proton radiobiology. Cancers (Basel). 7:353–381.
  • Uemura T, Kirichenko A, Bunker M, Vincent M, Machado L, Thai N. 2019. Stereotactic body radiation therapy: a new strategy for loco-regional treatment for hepatocellular carcinoma while awaiting liver transplantation. World J Surg. 43:886–893.
  • UNSCEAR. 1982. Non-stochastic effects of irradiation. https://www.unscear.org/docs/publications/1982/UNSCEAR_1982_Annex-J.pdf
  • van der Zee J, González D, van Rhoon GC, van Dijk JDP, van Putten WLJ, Hart A. 2000. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet. 355:1119–1125.
  • Vankayala R, Lin C-C, Kalluru P, Chiang C-S, Hwang KC. 2014. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials. 35(21):5527–5538.
  • Vieira L, Castilho ML, Ferreira I, Ferreira-Strixino J, Hewitt KC, Raniero L. 2017. Synthesis and characterization of gold nanostructured Chorin e6 for Photodynamic Therapy. Photodiagnosis Photodyn Ther. 18:6–11.
  • Vignard J, Mirey G, Salles B. 2013. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 108:362–369.
  • Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. 2019. Gold nanoparticles for photothermal cancer therapy. Front Chem. 7:167.
  • Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. 2014. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal. 21:1516–1554.
  • Wahab R, Dwivedi S, Khan F, Mishra YK, Hwang IH, Shin H-S, Musarrat J, Al-Khedhairy AA. 2014. Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in myoblast (C2C12) cells. Colloids Surf B Biointerfaces. 123:664–672.
  • Wang KK, Finlay JC, Busch TM, Hahn SM, Zhu TC. 2010. Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. J Biophotonics. 3:304–318.
  • Wang S, Huang P, Nie L, Xing R, Liu D, Wang Z, Lin J, Chen S, Niu G, Lu G, et al. 2013. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater Weinheim. 25(22):3055–3061.
  • Wang Y, Shang W, Niu M, Tian J, Xu K. 2019. Hypoxia-active nanoparticles used in tumor theranostic. Int J Nanomedicine. 14:3705–3722.
  • Wardman P. 2007. Chemical radiosensitizers for use in radiotherapy. Clin Oncol (R Coll Radiol). 19:397–417.
  • Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J, Russell DA. 2006. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a “ 'Trojan horse'. Photochem Photobiol Sci. 5(8):727–734.
  • Wild CP, Weiderpass E, Stewart BW, editors. 2020. World Cancer Report: cancer research for cancer prevention. Lyon: International Agency for Research on Cancer (IARC). [accessed 2020 Apr 15]. http://publications.iarc.fr/586
  • Willers H, Allen A, Grosshans D, McMahon SJ, von Neubeck C, Wiese C, Vikram B. 2018. Toward a variable RBE for proton beam therapy. Radiother Oncol. 128:68–75.
  • Wilson RR. 1946. Radiological use of fast protons. Radiology. 47:487–491.
  • Wu C, Li D, Wang L, Guan X, Tian Y, Yang H, Li S, Liu Y. 2017. Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics. Acta Biomater. 53:631–642.
  • Xu J, Gao J, Wei Q. 2016. Combination of photodynamic therapy with radiotherapy for cancer treatment. J Nanomater. 2016:1–7.
  • Xu W, Qian J, Hou G, Wang Y, Wang J, Sun T, Ji L, Suo A, Yao Y. 2019. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Acta Biomater. 83:400–413.
  • Yan J, Sun H, Li J, Qi W, Wang H. 2018. A theranostic plaster combining photothermal therapy and photodynamic therapy based on chlorin e6/gold nanorods (Ce6/Au nrs) composite. Colloids Surfaces A Physicochem Eng Asp. 537:460–466.
  • Yang CJ, Chithrani DB. 2016. Nuclear targeting of gold nanoparticles for improved therapeutics. Curr Top Med Chem. 16(3):271–280.
  • Zeil K, Kraft SD, Bock S, Bussmann M, Cowan TE, Kluge T, Metzkes J, Richter T, Sauerbrey R, Schramm U. 2010. The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J Phys. 12:045015.
  • Zhang Aw, Guo Wh, Qi Yf, Wang Jz, Ma Xx, Yu Dx. 2016. Synergistic effects of gold nanocages in hyperthermia and radiotherapy treatment. Nanoscale Res Lett. 11:279.
  • Zhang P, Steelant W, Kumar M, Scholfield M. 2007. Versatile photosensitizers for photodynamic therapy at infrared excitation. J Am Chem Soc. 129:4526–4527.
  • Zhao Z, Xu H, Li S, Han Y, Jia J, Han Z, Zhang D, Zhang L, Yu R, Liu H. 2019. Hypoxic radiosensitizer-lipid coated gold nanoparticles enhance the effects of radiation therapy on tumor growth. J Biomed Nanotechnol. 15:1982–1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.