430
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Track-structure modes in particle and heavy ion transport code system (PHITS): application to radiobiological research

ORCID Icon, ORCID Icon, ORCID Icon, , , , & show all
Pages 148-157 | Received 10 Sep 2021, Accepted 31 Oct 2021, Published online: 20 Dec 2021

References

  • Akamatsu K, Shikazono N, Saito T. 2015. Localization estimation of ionizing radiation-induced abasic sites in DNA in the solid state using fluorescence resonance energy transfer. Radiat Res. 183(1):105–113.
  • Ballarini F, Altieri S, Bortolussi S, Carante M, Giroletti E, Protti N. 2014. The BIANCA model/code of radiation-induced cell death: application to human cells exposed to different radiation types. Radiat Environ Biophys. 53(3):525–533.
  • Bentzen S, Joiner M, van Der Kogel A. 2009. The linear-quadratic approach in clinical practice. In: Joiner MC, van der Kogel A, editors. Basic clinical radiobiology. 4th ed. London: Edward Arnold; p. 120–134.
  • Bernal MA, Bordage MC, Brown JMC, Davídková M, Delage E, El Bitar Z, Enger SA, Francis Z, Guatelli S, Ivanchenko VN, et al. 2015. Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med. 31(8):861–874.
  • Botchway SW, Stevens DL, Hill MA, Jenner TJ, O'Neill P. 1997. Induction and rejoining of DNA double-strand breaks in Chinese hamster V79-4 cells irradiated with characteristic aluminium K and copper L ultrasoft x-rays. Radiat Res. 148(4):317–324.
  • Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L. 2000. Resonant formation of DNA strand breaks by Low-energy (3 to 20 eV) electrons. Science. 287(5458):1658–1660.
  • Chauvie S, Francis Z, Guatelli S, Incerti S, Mascialino B, Moretto P, Nieminen P, Pia MG. 2007. Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models. IEEE Trans Nucl Sci. 54(6):2619–2628.
  • Cobut V, Frongillo Y, Patau JP, Goulet T, Fraser M-J, Jay-Gerin J-P. 1998. Monte carlo simulation of fast electron and proton tracks in liquid water-phycisal and physicochemical aspects. Radiat Phys Chem. 51(3):229–243.
  • Coderre JA, Makar MS, Micca PL, Nawrocky MM, Liu HB, Joel DD, Slatkin DN, Amols HI. 1993. Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9l rat gliosarcoma in vitro and in vivo. Int J Radiat Oncol. 27(5):1121–1129.
  • Date H, Sutherland KL, Hayashi T, Matsuzaki Y, Kiyanagi Y. 2006. Inelastic collision processes of low-energy protons in liquid water. Radiat Phys Chem. 75(2):179–187.
  • de Lara CM, Hill MA, Jenner TJ, Papworth D, O'Neill P. 2001. Dependence of the yield of DNA double-strand breaks in Chinese hamster V79-4 cells on the photon energy of ultrasoft x rays. Radiat Res. 155(3):440–408.
  • Folkard M, Prise KM, Vojnovic B, Davies S, Roper MJ, Michael BD. 1993. Measurement of DNA damage by electrons with energies between 25 and 4000 eV. Int J Radiat Biol. 64(6):651–658.
  • Francis Z, Incerti S, Capra R, Mascialino B, Montarou G, Stepan V, Villagrasa C. 2011b. Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes. Appl Radiat Isot. 69(1):220–226.
  • Francis Z, Villagrasa C, Clairand I. 2011a. Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm. Comput Methods Programs Biomed. 101(3):265–270.
  • Frankenberg D, Brede HJ, Schrewe UJ, Steinmetz C, Frankenberg-Schwager M, Kasten G, Pralle E. 1999. Induction of DNA double strand breaks by 1H and 4He ions in primary human skin fibroblasts in the LET range of 8 to 124 keV/μm. Radiat Res. 151(5):540–549.
  • Frankenberg-Schwager M, Frankenberg D. 1990. DNA double-strand breaks: their repair and relationship to cell killing in yeast. Int J Radiat Biol. 58(4):569–575.
  • Friedland W, Dingfelder M, Kundrát P, Jacob P. 2011. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res. 711(1–2):28–40.
  • Friedland W, Jacob P, Paretzke HG, Stork T. 1998. Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. Radiat Res. 150(2):170–182.
  • Friedland W, Schmitt E, Kundrát P, Dingfelder M, Baiocco G, Barbieri S, Ottolenghi A. 2017. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci Rep. 7:45161.
  • Fulford J, Nikjoo H, Goodhead DT, O'Neill P. 2001. Yields of SSB and DSB induced in DNA by Al(K) ultrasoft X-rays and alpha-particles: comparison of experimental and simulated yields. Int J Radiat Biol. 77(10):1053–1066.
  • Goodhead DT, Leenhouts HP, Paretzke HG, Terrissol M, Nikjoo H, Blaauboer R. 1994. Track structure approaches to the interpretation of radiation effects on DNA. Radiat Prot Dos. 52(1–4):217–223.
  • Grosswendt B, Pszona S, Bantsar A. 2007. New descriptors of radiation quality based on nanodosimetry, a first approach. Radiat Prot Dos. 126(1–4):432–444.
  • Grün R, Friedrich T, Elsässer T, Krämer M, Zink K, Karger CP, Durante M, Engenhart-Cabillic R, Scholz M. 2012. Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy. Phys Med Biol. 57(22):7261–7274.
  • Hall EJ, Giaccia AJ. 2006. Physics and chemistry of radiation absorption. In: Radiobiology for the radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; p. 3–11.
  • Hamm RN, Turner JE, Wright HA. 1985. Statistical fluctuations in heavy charged particle tracks. Radiat Prot Dos. 13(1–4):83–86.
  • Harada M, Maekawa F, Oikawa K, Meigo S, Takada H, Futakawa M. 2011. Application and validation of particle transport code PHITS in design of J-PARC 1 MW spallation neutron source. Proc Nucl Sci Technol. 2(0):872–878.
  • Hawkins RB. 1994. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res. 140(3):366–374.
  • Hawkins RB. 1996. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int J Radiat Boil. 69(6):739–755.
  • Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR. 2005. The EGS5 code system. USA and Japan: SLAC National Accelerator Laboratory and High Energy Accelerator Research Organization.
  • ICRU. 1970. International Commission on Radiation Units and Measurements. ICRU Report 16.
  • ICRU. 1983. Microdosimetry. International Commission on Radiation Units and Measurements. ICRU Report 36.
  • ICRU. 1984. International Commission on Radiation Units and Measurements. ICRU Report 37.
  • ICRU. 1993. International Commission on Radiation Units and Measurements. ICRU Report 49.
  • ICRU. 2016. International Commission on Radiation Units and Measurements. ICRU Report 90.
  • Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Guèye P, Mantero A, Mascialino B, Moretto P, et al. 2010. The Geant4-DNA project. Int J Model Simul Sci Comput. 01(02):157–178.
  • Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, et al. 2018. Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA project. Med Phys. 45 (8):e722–e739.s.
  • Incerti S, Kyriakou I, Bordage MC, Guatelli S, Ivanchenko V, Emfietzoglou D. 2019. Track structure simulations of proximity functions in liquid water using the Geant4-DNA toolkit. J Appl Phys. 125(10):104301.
  • Incerti S, Psaltaki M, Gillet P, Barberet P, Bardiès M, Bernal MA, Bordage M-C, Breton V, Davidkova M, Delage E, et al. 2014. Simulating radial dose of ion tracks in liquid water simulated with Geant4-DNA: a comparative study. Nucl Instrum Methods Phys Res B. 333:92–98.
  • Iwamoto H, Nishihara K, Iwamoto Y, Hashimoto S, Matsuda N, Sato T, Harada M, Maekawa F. 2016. Impact of PHITS spallation models on the neutronics design of an accelerator-driven system. J Nucl Sci Technol. 53(10):1585–1594.
  • Iwamoto Y, Sato T, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Matsuda N, Hosoyamada R, Niita K. 2017. Benchmark study of the recent version of the PHITS code. J Nucl Sci Technol. 54(5):617–635.
  • Joiner MC. 2009. Quantifying cell kill and cell survival. In: Joiner MC, van der Kogel A, editors. Basic clinical radiobiology. 4th ed. London: Edward Arnold; p. 41–55.
  • Kai T, Yokoya A, Ukai M, Fujii K, Toigawa T, Watanabe R. 2018. A significant role of non-thermal equilibrated electrons in the formation of deleterious complex DNA damage. Phys Chem Chem Phys. 20(4):2838–2844.
  • Kai T, Yokoya A, Ukai M, Fujii K, Higuchi M, Watanabe R. 2014. Dynamics of low energy electrons in liquid water with consideration of Coulomb interaction with positively charged water molecules induced by electron collision. Radiat Phys Chem. 102:16–22.
  • Kai T, Yokoya A, Ukai M, Fujii K, Watanabe R. 2015a. Thermal equilibrium and prehydration processes of electrons injected into liquid water calculated by dynamic Monte Carlo method. Radiat Phys Chem. 115:1–5.
  • Kai T, Yokoya A, Ukai M, Fujii K, Watanabe R. 2016b. Dynamic behavior of secondary electrons in liquid water at the earliest stage upon irradiation: implications for DNA damage localization mechanism. J Phys Chem A. 120(42):8228–8233.
  • Kai T, Yokoya A, Ukai M, Watanabe R. 2015b. Cross sections, stopping powers, and energy loss rates for rotational and phonon excitation processes in liquid water by electron impact. Radiat Phys Chem. 108:13–17.
  • Kai T, Yokoya A, Ukai M, Watanabe R. 2016a. Deceleration processes of secondary electrons produced by a high-energy auger electron in a biological context. Int J Radiat Biol. 92:645–659.
  • Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, Sakama M, Shinoda H. 2006. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res. 166(4):629–638.
  • Kase Y, Yamashita W, Matsufuji N, Takada K, Sakae T, Furusawa Y, Yamashita H, Murayama S. 2013. Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams. J Radiat Res. 54(3):485–493.
  • Konovalov VV, Raitsimring AM, Tsvetkov YD. 1988. Thermalization lengths of “subexcitation electrons” in water determined by photoinjection from metals into electrolyte solutions. Radiat Phys Chem. 32(4):623–632.
  • Krim M, Harakat N, Khouaja A, Inchaouh J, Mesradi MR, Chakir H, Kartouni A, Marouane A, Benjelloun M, Boudhaim S, et al. 2017. Method for range calculation based on empirical models of proton in liquid water: validation study using Monte-Carlo method and ICRU data. Int J Sci Eng Res. 8(3):728–735.
  • Kumada H. 2020. Beam delivery system for proton radiotherapy. In: Proton beam radiotherapy: physics and biology. Switzerland: Springer Nature; p. p97–112.
  • Kundrát P, Friedland W, Becker J, Eidemüller M, Ottolenghi A, Baiocco G. 2020. Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies. Sci Rep. 10(1):15775.
  • Kyriakou I, Emfietzoglou D, Ivanchenko V, Bordage MC, Guatelli S, Lazarakis P, Tran HN, Incerti S. 2017. Microdosimetry of electrons in liquid water using the low-energy models of Geant4. J Appl Phys. 122(2):024303.
  • Kyriakou I, Tremi I, Georgakilas AG, Emfietzoglou D. 2021. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Appl Radiat Isot. 172:109654.
  • Leloup C, Garty G, Assaf G, Cristovão A, Breskin A, Chechik R, Shchemelinin S, Paz-Elizur T, Livneh Z, Schulte RW, et al. 2005. Evaluation of lesion clustering in irradiated plasmid DNA. Int J Radiat Biol. 81(1):41–54.
  • Liamsuwan T, Nikjoo H. 2013a. Cross sections for bare and dressed carbon ions in water and neon. Phys Med Biol. 58(3):641–672.
  • Liamsuwan T, Nikjoo H. 2013b. A Monte Carlo track structure simulation code for the full-slowing-down carbon projectiles of energies 1 keV u(-1)-10 MeV u(-1) in water. Phys Med Biol. 58(3):673–701.
  • Liamsuwan T, Uehara S, Emfietzoglou D, Nikjoo H. 2011. Physical and biophysical properties of proton tracks of energies 1 keV to 300 MeV in water. Int J Radiat Biol. 87(2):141–160.
  • Ljungman M, Nyberg S, Nygren J, Eriksson M, Ahnstrom G. 1991. DNA-bound proteins contribute much more than soluble intracellular compounds to the intrinsic protection against radiation-induced DNA strand breaks in human cells. Radiat Res. 127(2):171–176.
  • Lobrich M, Cooper PK, Rydberg B. 1996. Non-random distribution of DNA double-strand breaks induced by particle irradiation. Int J Radiat Biol. 70(5):493–503.
  • Loncol T, Cosgrove V, Denis JM, Gueulette J, Mazal A, Menzel HG, Pihet P, Sabattier R. 1994. Radiobiological effectiveness of radiation beams with broad LET spectra: microdosimetric analysis using biological weighting functions. Radiat Prot Dosim. 52(1–4):347–352.
  • Martin F, Burrow PD, Cai Z, Cloutier P, Hunting D, Sanche L. 2004. DNA strand breaks induced by 0–4 eV electrons: the role of shape resonances. Phys Rev Lett. 93(6):068101.
  • Matsuya Y, Fukunaga H, Omura M, Date H. 2020. A model for estimating dose-rate effects on cell-killing of human melanoma after boron neutron capture therapy. Cells. 9(5):1117.
  • Matsuya Y, Kai T, Sato T, Liamsuwan T, Sasaki K, Nikjoo H. 2021. Verification of KURBUC-based ion track structure mode for proton and carbon ions in the PHITS code. Phys Med Biol. 66(6):06NT02.
  • Matsuya Y, Kai T, Yoshii Y, Yachi Y, Naijo S, Date H, Sato T. 2019. Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water. J Appl Phys. 126(12):124701.
  • Matsuya Y, Nakano T, Kai T, Shikazono N, Akamatsu A, Yoshii Y, Sato T. 2020. A simplified cluster analysis of electron track structure for estimating complex DNA damage yields. IJMS. 21(5):1701.
  • Matsuya Y, Ohtsubo Y, Tsutsumi K, Sasaki K, Yamazaki R, Date H. 2014. Quantitative estimation of DNA damage by photon irradiation based on the microdosimetric-kinetic model. J Radiat Res. 55(3):484–493.
  • McMahon SJ, Prise KM. 2019. Mechanistic modelling of radiation responses. Cancers. 11(2):205.
  • McMahon SJ. 2018. The linear quadratic model: usage, interpretation and challenges. Phys Med Biol. 64(1):01TR01.
  • Nakano H, Kawahara D, Tanabe S, Utsunomiya S, Takizawa T, Sakai M, Nakano T, Ohta A, Kaidu M, Ishikawa H. 2021. Calculated relative biological effectiveness (RBE) for initial DNA double-strand breaks (DSB) from flattening filter and flattening filter-free 6 MV X-ray fields. BJR Open. 2:20200072.
  • Nakashima H, Nakane Y, Masukawa F, Matsuda N, Oguri T, Nakano H, Sasamoto N, Shibata T, Suzuki T, Miura T, et al. 2005. Radiation safety design for the J-PARC project. Radiat Prot Dosimetry. 115(1-4):564–568.
  • Nikitaki Z, Nikolov V, Mavragani IV, Mladenov E, Mangelis A, Laskaratou DA, Fragkoulis GI, Hellweg CE, Martin OA, Emfietzoglou D, et al. 2016. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic Res. 50(Suppl. 1):S64–S78.
  • Nikjoo H, Bolton CE, Watanabe R, Terrissol M, O'Neill P, Goodhead DT. 2002. Modelling of DNA damage induced by energetic electrons (100 eV to 100 keV). Radiat Prot Dosimetry. 99(1–4):77–80.
  • Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D, Uehara S. 2016. Radiation track, DNA damage and response-a review. Rep Prog Phys. 79(11):116601.
  • Nikjoo H, O'Neill P, Goodhead DT, Terrissol M. 1997. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol. 71(5):467–483.
  • Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA. 2006. Track-structure codes in radiation research. Radiat Meas. 41(9–10):1052–1074.
  • Ogawa T, Yamaki T, Sato T. 2018. Analysis of scintillation light intensity by microscopic radiation transport calculation and förster quenching model. PLoS One. 13(8):e0202011.
  • Okamoto H, Kanai T, Kase Y, Matsumoto Y, Furusawa Y, Fujita Y, Saitoh H, Itami J, Kohno T. 2011. Relation between lineal energy distribution and relative biological effectiveness for photon beams according to the microdosimetric kinetic model. J Radiat Res. 52(1):75–81.
  • Parisi A, Sato T, Matsuya Y, Kase Y, Magrin G, Verona C, Tran L, Rosenfeld A, Bianchi A, Olko P, et al. 2020. Development of a new microdosimetric biological weighting function for the RBE10 assessment in case of the V79 cell line exposed to ions from 1H to 238U. Phys Med Biol. 65(23):235010.
  • Parisi A, Van Hoey O, Mégret P, Vanhavere F. 2019. Microdosimetric specific energy probability distribution in nanometric targets and its correlation with the efficiency of thermoluminescent detectors exposed to charged particles. Radiat Meas. 123:1–12.
  • Petrolli L, Tommasino F, Scifoni E, Lattanzi G. 2020. Can we assess early DNA damage at the molecular scale by radiation track structure simulations? A tetranucleosome scenario in Geant4-DNA. Front Phys. 8:576284.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 273(10):5858–5868.
  • Sakata D, Belov O, Bordage M-C, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, et al. 2020. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. Sci Rep. 10(1):20788.
  • Sato T, Furusawa Y. 2012. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models. Radiat Res. 178(4):341–356.
  • Sato T, Furuta T, Liu Y, Naka S, Nagamori S, Kanai Y, Watabe T. 2021. Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model. EJNMMI Phys. 8(1):4.
  • Sato T, Hamada N. 2014. Model assembly for estimating cell surviving fraction for both targeted and nontargeted effects based on microdosimetric probability densities. PLoS One. 9 (11):e114056.
  • Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai P-E, Matsuda N, Iwase H, et al. 2018. Features of particle and heavy Ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 55(6):684–690.
  • Sato T, Kase Y, Watanabe R, Niita K, Sihver L. 2009. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model. Radiat Res. 171(1):107–117.
  • Sato T, Masunaga S, Kumada H, Hamada N. 2018. Microdosimetric modeling of biological effectiveness for boron neutron capture therapy considering intra- and intercellular heterogeneity in 10B distribution. Sci Rep. 8(1):988.
  • Sato T, Watanabe R, Niita K. 2006. Development of a calculation method for estimating specific energy distribution in complex radiation fields. Radiat Prot Dosimetry. 122(1–4):41–45.
  • Scholz M. 2003. Effects of ion radiation on cells and tissues. In: Radiation effects on polymers for biological use. Berlin, Hei-delberg: Springer; p. 95–155.
  • Semenenko VA, Stewart RD. 2006. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol. 51(7):1693–1706.
  • Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A. 2009. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J Radiat Res. 50(1):27–36.
  • Simons J. 2006. How do low-energy (0.1-2 eV) electrons cause DNA-strand breaks? Acc Chem Res. 39(10):772–779.
  • Suzuki M. 2020. Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol. 25(1):43–50.
  • Takada K, Sato T, Kumada H, Koketsu J, Takei H, Sakurai H, Sakae T. 2018. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. J Radiat Res. 59(1):91–99.
  • Tomita H, Kai M, Kusama T, Ito A. 1997. Monte Carlo simulation of physicochemical processes of liquid water radiolysis. The effects of dissolved oxygen and OH scavenger. Radiat Environ Biophys. 36(2):105–116.
  • Tran HN, El Bitar Z, Champion C, Karamitros M, Bernal MA, Francis Z, Ivantchenko V, Lee SB, Shin JI, Incerti S. 2015. Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA. Nucl Instrum Methods Phys Res B. 343:132–137.
  • Tsuchida H, Kai T, Kitajima K, Matsuya Y, Majima T, Saito M. 2020. Relation between dissociation processes of biomolecules and energy of secondary electrons generated in liquid water by fast heavy ions. Euro Phys J D. 74:212.
  • Uehara S, Nikjoo H, Goodhead DT. 1993. Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region. Phys Med Biol. 38(12):1841–1858.
  • Uehara S, Toburen LH, Nikjoo H. 2001. Development of a Monte Carlo track structure code for low-energy protons in water. Int J Radiat Biol. 77(2):139–154.
  • Watanabe R, Rahmanian S, Nikjoo H. 2015. Spectrum of radiation-induced clustered non-DSB damage – a monte carlo track structure modeling and calculations. Radiat Res. 183(5):525–540.
  • Wingate CL, Baum JW. 1976. Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tis-sue-equivalent gas. Radiat Res. 65(1):1–19.
  • Wouters GB, Begg AC. 2009. Irradiation-induced damage and the DNA damage response. In: Joiner MC, van der Kogel A, editors. Basic clinical radiobiology. 4th ed. London: Edward Arnold; p. 11–26.
  • Xie W, Li J, Li C, Qiu R, Yan C, Zeng Z. 2013. Comparison of direct DNA strand break simulated with different DNA models. Radiat Prot Dosimetry. 156(3):283–288.
  • Xu X, Nakano T, Tsuda M, Kanamoto R, Hirayama R, Uzawa A, Ide H. 2020. Direct observation of damage clustering in irradiated DNA with atomic force microscopy. Nucleic Acids Res. 48(3):e18.
  • Yoshii Y, Sasaki K, Matsuya Y, Date H. 2015. Cluster analysis for the probability of DSB site induced by electron tracks. Nucl Instr Methods Phys Res B. 350:55–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.