970
Views
0
CrossRef citations to date
0
Altmetric
Meeting Reports

Considerations for application of benchmark dose modeling in radiation research: workshop highlights

ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1320-1331 | Received 28 Aug 2022, Accepted 06 Feb 2023, Published online: 07 Mar 2023

References

  • Adam N, Vuong NQ, Adams H, Kuo B, Beheshti A, Yauk C, Wilkins R, Chauhan V. 2022. Evaluating the Influences of confounding variables on benchmark dose using a case study in the field of ionizing radiation. Int J Radiat Biol. 98(12):1845–1855.
  • Ainsbury EA, Bouffler SD, Dörr W, Graw J, Muirhead CR, Edwards AA, Cooper J. 2009. Radiation cataractogenesis: a review of recent studies. Radiat Res. 172(1):1–9.
  • Alcaraz AJG, Baraniuk S, Mikulášek K, Park B, Lane T, Burbridge C, Ewald J, Potěšil D, Xia J, Zdráhal Z, et al. 2022. Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine. Environ Pollut. 295:118667.
  • Alcaraz AJG, Mikulášek K, Potěšil D, Park B, Shekh K, Ewald J, Burbridge C, Zdráhal Z, Schneider D, Xia J, et al. 2021. Assessing the toxicity of 17α-ethinylestradiol in rainbow trout using a 4-day transcriptomics benchmark dose (BMD) embryo assay. Environ Sci Technol. 55(15):10608–10618.
  • Boobis AR, Cohen SM, Dellarco V, McGregor D, Meek ME, Vickers C, Willcocks D, Farland W. 2006. Ipcs framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol. 36(10):781–792.
  • Boobis AR, Doe JE, Heinrich-Hirsch B, Meek ME, Munn S, Ruchirawat M, Schlatter J, Seed J, Vickers C. 2008. IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol. 38(2):87–96.
  • Chauhan V, Kuo B, McNamee JP, Wilkins RC, Yauk CL. 2016. Transcriptional benchmark dose modeling: exploring how advances in chemical risk assessment may be applied to the radiation field. Environ Mol Mutagen. 57(8):589–604.
  • Chauhan V, Rowan-Carroll A, Gagné R, Kuo B, Williams A, Yauk CL. 2019. The use of in vitro transcriptional data to identify thresholds of effects in a human lens epithelial cell-line exposed to ionizing radiation. Int J Radiat Biol. 95(2):156–169.
  • Chauhan V, Adam N, Kuo B, Williams A, Yauk CL, Wilkins R, Stainforth R. 2021a. Meta-analysis of transcriptomic datasets using benchmark dose modeling shows value in supporting radiation risk assessment. Int J Radiat Biol. 97(1):31–49.
  • Chauhan V, Stricklin D, Cool D. 2021b. The integration of the adverse outcome pathway framework to radiation risk assessment. Int J Radiat Biol. 97(1):60–67.
  • Chauhan V, Wilkins RC, Beaton D, Sachana M, Delrue N, Yauk C, O’Brien J, Marchetti F, Halappanavar S, Boyd M, et al. 2021c. Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. Int J Radiat Biol. 97(4):431–441.
  • Chauhan V, Beaton D, Hamada N, Wilkins R, Burtt J, Leblanc J, Cool D, Garnier-Laplace J, Laurier D, Le Y, et al. 2022a. Adverse outcome pathway: a path toward better data consolidation and global co-ordination of radiation research. Int J Radiat Biol. 98(12):1694–1703.
  • Chauhan V, Hamada N, Garnier-Laplace J, Laurier D, Beaton D, Tollefsen KE, Locke PA. 2022b. Establishing a communication and engagement strategy to facilitate the adoption of the adverse outcome pathways in radiation research and regulation. Int J Radiat Biol. 98(12):1714–1721.
  • Crizer DM, Ramaiahgari SC, Ferguson SS, Rice JR, Dunlap PE, Sipes NS, Auerbach SS, Merrick BA, DeVito MJ. 2021. Benchmark concentrations for untargeted metabolomics versus transcriptomics for liver injury compounds in in vitro liver models. Toxicol Sci. 181(2):175–186.
  • Crump KS. 1984. A new method for determining allowable daily intakes. Fundam Appl Toxicol. 4(5):854–871.
  • Davis JA, Gift JS, Zhao QJ. 2011. Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1. Toxicol Appl Pharmacol. 254(2):181–191.
  • EFSA. 2017. Update: use of the benchmark dose approach in risk assessment. EFSA J. 15(1):e04658.
  • Ewald J, Soufan O, Xia J, Basu N. 2021. Fastbmd: an online tool for rapid benchmark dose-response analysis of transcriptomics data. Bioinformatics. 37(7):1035–1036.
  • Farmahin R, Gannon AM, Gagné R, Rowan-Carroll A, Kuo B, Williams A, Curran I, Yauk CL. 2019. Hepatic transcriptional dose-response analysis of male and female fischer rats exposed to hexabromocyclododecane. Food Chem Toxicol. 133:110262.
  • Farmahin R, Williams A, Kuo B, Chepelev NL, Thomas RS, Barton-Maclaren TS, Curran IH, Nong A, Wade MG, Yauk CL. 2017. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Arch Toxicol. 91(5):2045–2065.
  • Filipsson AF, Sand S, Nilsson J, Victorin K. 2003. The benchmark dose method–review of available models, and recommendations for application in health risk assessment. Crit Rev Toxicol. 33(5):505–542.
  • Gibb S. 2008. Toxicity testing in the 21st century: a vision and a strategy. Reprod Toxicol. 25(1):136–138.
  • Gwinn WM, Auerbach SS, Parham F, Stout MD, Waidyanatha S, Mutlu E, Collins B, Paules RS, Merrick BA, Ferguson S, et al. 2020. Evaluation of 5-day in vivo rat liver and kidney with high-throughput transcriptomics for estimating benchmark doses of apical outcomes. Toxicol Sci. 176(2):343–354.
  • Haber LT, Dourson ML, Allen BC, Hertzberg RC, Parker A, Vincent MJ, Maier A, Boobis AR. 2018. Benchmark dose (BMD) modeling: current practice, issues, and challenges. Crit Rev Toxicol. 48(5):387–415.
  • Harrill JA, Everett LJ, Haggard DE, Sheffield T, Bundy JL, Willis CM, Thomas RS, Shah I, Judson RS. 2021a. High-throughput transcriptomics platform for screening environmental chemicals. Toxicol Sci. 181(1):68–89.
  • Harrill JA, Viant MR, Yauk CL, Sachana M, Gant TW, Auerbach SS, Beger RD, Bouhifd M, O'Brien J, Burgoon L, et al. 2021b. Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regul Toxicol Pharmacol. 125:105020.
  • ICRP. 2012. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs — threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 41(1–2):1–322.
  • Johnson KJ, Auerbach SS, Costa E. 2020. A rat liver transcriptomic point of departure predicts a prospective liver or non-liver apical point of departure. Toxicol Sci. 176(1):86–102.
  • Krewski D, Acosta D, Andersen M, Anderson H, Bailar JC, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S, et al. 2010. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B. 13(2–4):51–138.
  • Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, et al. 2020. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol. 94(1):1–58.
  • Lucas J, Dressman HK, Suchindran S, Nakamura M, Chao NJ, Himburg H, Minor K, Phillips G, Ross J, Abedi M, et al. 2014. A translatable predictor of human radiation exposure. PLOS One. 9(9):e107897.
  • Matteo G, Leingartner K, Rowan-Carroll A, Meier M, Williams A, Beal MA, Gagné M, Farmahin F, Wickramasuriya S, Reardon AJF, et al. 2022. In vitro transcriptomic analyses reveal pathway perturbations, estrogenic activities, and potencies of data-poor BPA alternative chemicals. Toxicol Sci. 191(2):266–275.
  • Miousse IR, Murphy LA, Lin H, Schisler MR, Sun J, Chalbot MG, Sura R, Johnson K, LeBaron MJ, Kavouras IG, et al. 2017. Dose-response analysis of epigenetic, metabolic, and apical endpoints after short-term exposure to experimental hepatotoxicants. Food Chem Toxicol. 109(Pt 1):690–702.
  • Mittal K, Ewald J, Basu N. 2022. Transcriptomic points of departure calculated from rainbow trout gill, liver, and gut cell lines exposed to methylmercury and fluoxetine. Environ Toxicol Chem. 41(8):1982–1992.
  • Moe SJ, Wolf R, Xie L, Landis WG, Kotamäki N, Tollefsen KE. 2021. Quantification of an adverse outcome pathway network by bayesian regression and bayesian network modeling. Integr Environ Assess Manag. 17(1):147–164.
  • NCRP. 2020. Approaches for Integrating Information from radiation biology and epidemiology to enhance low-dose health risk assessment. Bethesda (MD): National Council on Radiation Protection and Measurements. NCRP Report No.: 186.
  • OECD. 2017. Guidance document for the use of adverse outcome pathways in developing integrated approaches to testing and assessment (IATA). Series on testing and assessment no. 260. Paris France: Environment, Health and Safety, Environment Directorate, OECD.
  • OECD. 2018. Users’ handbook supplement to the guidance document for developing and assessing adverse outcome pathways. OECD Series on adverse outcome pathways, no 1. Paris France: Environment, Health and Safety, Environment Directorate, OECD.
  • Olesti E, González-Ruiz V, Wilks MF, Boccard J, Rudaz S. 2021. Approaches in metabolomics for regulatory toxicology applications. Analyst. 146(6):1820–1834.
  • Pagé-Larivière F, Crump D, O'Brien JM. 2019. Transcriptomic points-of-departure from short-term exposure studies are protective of chronic effects for fish exposed to estrogenic chemicals. Toxicol Appl Pharmacol. 378:114634.
  • Phillips JR, Svoboda DL, Tandon A, Patel S, Sedykh A, Mav D, Kuo B, Yauk CL, Yang L, Thomas RS, et al. 2019. Bmdexpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics. 35(10):1780–1782.
  • Preston RJ. 2015. Integrating basic radiobiological science and epidemiological studies: why and how. Health Phys. 108(2):125–130.
  • Qutob SS, Chauhan V, Kuo B, Williams A, Yauk CL, McNamee JP, Gollapudi B. 2018. The application of transcriptional benchmark dose modeling for deriving thresholds of effects associated with solar-simulated ultraviolet radiation exposure. Environ Mol Mutagen. 59(6):502–515.
  • Rager JE, Auerbach SS, Chappell GA, Martin E, Thompson CM, Fry RC. 2017. Benchmark dose modeling estimates of the concentrations of inorganic arsenic that induce changes to the neonatal transcriptome, proteome, and epigenome in a pregnancy cohort. Chem Res Toxicol. 30(10):1911–1920.
  • Ramaiahgari SC, Auerbach SS, Saddler TO, Rice JR, Dunlap PE, Sipes NS, DeVito MJ, Shah RR, Bushel PR, Merrick BA, et al. 2019. The power of resolution: contextualized understanding of biological responses to liver injury chemicals using high-throughput transcriptomics and benchmark concentration modeling. Toxicol Sci. 169(2):553–566.
  • Reardon AJF, Rowan-Carroll A, Ferguson SS, Leingartner K, Gagne R, Kuo B, Williams A, Lorusso L, Bourdon-Lacombe JA, Carrier R, et al. 2021. Potency ranking of per- and polyfluoroalkyl substances using high-throughput transcriptomic analysis of human liver spheroids. Toxicol Sci. 184(1):154–169.
  • Rowan-Carroll A, Reardon A, Leingartner K, Gagné R, Williams A, Meier MJ, Kuo B, Bourdon-Lacombe J, Moffat I, Carrier R, et al. 2021. High-throughput transcriptomic analysis of human primary hepatocyte spheroids exposed to per- and polyfluoroalkyl substances as a platform for relative potency characterization. Toxicol Sci. 181(2):199–214.
  • Sand S, Victorin K, Filipsson AF. 2008. The current state of knowledge on the use of the benchmark dose concept in risk assessment. J Appl Toxicol. 28(4):405–421.
  • Slob W. 2017. A general theory of effect size, and its consequences for defining the benchmark response (BMR) for continuous endpoints. Crit Rev Toxicol. 47(4):342–351.
  • Stainforth R, Vuong N, Adam N, Kuo B, Wilkins RC, Yauk C, Beheshti A, Chauhan V. 2022. Benchmark dose modeling of transcriptional data: a systematic approach to identify best practices for study designs used in radiation research. Int J Radiat Biol. 98(12):1832–1844.
  • Thomas RS, Allen BC, Nong A, Yang L, Bermudez E, Clewell HJ III, Andersen ME. 2007. A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure. Toxicol Sci. 98(1):240–248.
  • Thomas RS, Philbert MA, Auerbach SS, Wetmore BA, Devito MJ, Cote I, Rowlands JC, Whelan MP, Hays SM, Andersen ME, et al. 2013a. Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework. Toxicol Sci. 136(1):4–18.
  • Thomas RS, Wesselkamper SC, Wang NC, Zhao QJ, Petersen DD, Lambert JC, Cote I, Yang L, Healy E, Black MB, et al. 2013b. Temporal concordance between apical and transcriptional points of departure for chemical risk assessment. Toxicol Sci. 134(1):180–194.
  • USEPA. 2012. Benchmark dose technical guidance, EPA/100/R-12/001. Washington (DC): Risk Assessment Forum US Environmental Protection Agency.
  • Vaiserman A, Cuttler JM, Socol Y. 2021. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology. 22(2):145–164.
  • Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. 2020. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol. 54(5):2575–2584.
  • Webster AF, Chepelev N, Gagné R, Kuo B, Recio L, Williams A, Yauk CL. 2015. Impact of genomics platform and statistical filtering on transcriptional benchmark doses (BMD) and multiple approaches for selection of chemical point of departure (POD). PLOS One. 10(8):e0136764.
  • Wheeler MW, Bailer AJ. 2007. Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation. Risk Anal. 27(3):659–670.
  • Wheeler MW, Bailer AJ. 2009. Benchmark dose estimation incorporating multiple data sources. Risk Anal. 29(2):249–256.
  • Yang L, Allen BC, Thomas RS. 2007. Bmdexpress: a software tool for the benchmark dose analyses of genomic data. BMC Genomics. 8(1):387.
  • Yao CH, Wang L, Stancliffe E, Sindelar M, Cho K, Yin W, Wang Y, Patti GJ. 2020. Dose-response metabolomics to understand biochemical mechanisms and off-target drug effects with the TOXcms software. Anal Chem. 92(2):1856–1864.
  • Zheng L, Yan X, Suchindran S, Dressman H, Chute JP, Lucas J. 2014. Biological pathway selection through bayesian integrative modeling. Stat Appl Genet Mol Biol. 13(4):435–457.