171
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of γ-H2AX foci distribution among different peripheral blood mononucleated cell subtypes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1550-1558 | Received 09 Dec 2022, Accepted 19 Feb 2023, Published online: 09 Mar 2023

References

  • Ainsbury EA, Al-Hafidh J, Bajinskis A, Barnard S, Barquinero JF, Beinke C, de Gelder V, Gregoire E, Jaworska A, Lindholm C, et al. 2014. Inter- and intra-laboratory comparison of a multibiodosimetric approach to triage in a simulated, large scale radiation emergency. Int J Radiat Biol. 90(2):193–202.
  • Andrievski A, Wilkins RC. 2009. The response of γ-H2AX in human lymphocytes and lymphocytes subsets measured in whole blood cultures. Int J Radiat Biol. 85(4):369–376.
  • Barnard S, Ainsbury EA, Al-Hafidh J, Hadjidekova V, Hristova R, Lindholm C, Monteiro Gil O, Moquet J, Moreno M, Rossler U, et al. 2015. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiat Prot Dosimetry. 164(3):265–270.
  • Barquinero JF, Barrios L, Caballín MR, Miró R, Ribas M, Egozcue J. 1997. Biological dosimetry in simulated in vitro partial irradiations. Int J Radiat Biol. 71(4):435–440.
  • Beels L, Werbrouck J, Thierens H. 2010. Dose response and repair kinetics of γ-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and γ-radiation. Int J Radiat Biol. 86(9):760–768.
  • Chaurasia RK, Bhat NN, Gaur N, Shirsath KB, Desai UN, Sapra BK. 2021. Establishment and multiparametric-cytogenetic validation of 60Co-gamma-ray induced, phospho-gamma-H2AX calibration curve for rapid biodosimetry and triage management during radiological emergencies. Mutat Res Genet Toxicol Environ Mutagen. 866:503354.
  • Ding D, Zhang Y, Wang J, Wang X, Fan D, He L, Zhang X, Gao Y, Li Q, Chen H. 2016. γ-H2AX/53BP1/pKAP-1 foci and their linear tracks induced by in vitro exposure to radon and its progeny in human peripheral blood lymphocytes. Sci Rep. 6(1):38295.
  • Edwards AA, Lloyd DC, Purrott RJ. 1979. Radiation induced chromosome aberrations and the poisson distribution. Radiat Environ Biophys. 16(2):89–100.
  • Einbeck J, Ainsbury EA, Sales R, Barnard S, Kaestle F, Higueras M. 2018. A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLOS One. 13(11):e0207464.
  • Gruel G, Grégoire E, Lecas S, Martin C, Roch-Lefévre S, Vaurijoux A, Voisin P, Voisin P, Barquinero JF. 2013. Biological dosimetry by automated dicentric scoring in a simulated emergency. Radiat. Res. 179(5):557–569.
  • Hamasaki K, Imai K, Nakachi K, Takahashi N, Kodama Y, Kusunoki Y. 2007. Short-term culture and γH2AX flow cytometry determine differences in individual radiosensitivity in human peripheral T lymphocytes. Environ Mol Mutagen. 48(1):38–47.
  • Heylmann D, Ponath V, Kindler T, Kaina B. 2021. Comparison of DNA repair and radiosensitivity of different blood cell populations. Sci Rep. 11(1):2478.
  • Horn S, Barnard S, Rothkamm K. 2011. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS One. 6(9):e25113.
  • IAEA. 2011. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. Vienna: International Atomic Energy.
  • Ismail IH, Wadhra TI, Hammarsten O. 2007. An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res. 35(5):e36.
  • Kato TA, Nagasawa H, Weil MM, Little JB, Bedford JS. 2006. Levels of γ-H2AX foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two AT families and in another apparently normal individual. Radiat Res. 166(3):443–453.
  • Kulka U, Abend M, Ainsbury E, Badie C, Barquinero JF, Barrios L, Beinke C, Bortolin E, Cucu A, de Amicis A, et al. 2017. RENEB–Running the European Network of biological dosimetry and physical retrospective dosimetry. Int J Radiat Biol. 93(1):2–14.
  • Lisowska H, Wegierek-Ciuk A, Banasik-Nowak A, Braziewicz J, Wojewodzka M, Wojcik A, Lankoff A. 2013. The dose-response relationship for dicentric chromosomes and γ-H2AX foci in human peripheral blood lymphocytes: influence of temperature during exposure and intra- and inter-individual variability of donors. Int J Radiat Biol. 89(3):191–199.
  • Lloyd-Smith JO. 2007. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLOS One. 2(2):e180.
  • López JS, Pujol-Canadell M, Puig P, Ribas M, Carrasco P, Armengol G, Barquinero JF. 2022. Establishment and validation of surface model for biodosimetry based on γ-H2AX foci detection. Int J Radiat Biol. 98(1):1–10.
  • Mandina T, Roch-Lefévre S, Voisin P, González JE, Lamadrid AI, Romero I, García O, Voisin P, Roy L. 2011. Dose-response relationship of γ-H2AX foci induction in human lymphocytes after X-rays exposure. Radiat Meas. 46(9):997–999.
  • Martin OA, Ivashkevich A, Choo S, Woodbine L, Jeggo PA, Martin RF, Lobachevsky P. 2013. Statistical analysis of kinetics, distribution and co-localisation of DNA repair foci in irradiated cells: Cell cycle effect and implications for prediction of radiosensitivity. DNA Repair. 12(10):844–855.
  • Młynarczyk D, Puig P, Armero C, Gómez-Rubio V, Barquinero JF, Pujol CM. 2022. Radiation dose estimation with time-since-exposure uncertainty using the γ-H2AX biomarker. Sci Rep. 12(1):19877.
  • Moquet J, Barnard S, Rothkamm K. 2014. Gamma-H2AX biodosimetry for use in large scale radiation incidents: comparison of a rapid “96 well lyse/fix” protocol with a routine method. PeerJ. 62:e282.
  • Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro O, Martins V, Rößler U, Vral A, Vandevoorde C, Wojewódzka M, et al. 2017. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol. 93(1):58–64.
  • Oras A, Quirant-Sanchez B, Popadic D, Thunberg S, Winqvist O, Heck S, Cwikowski M, Riemann D, Seliger B, Caceres M, et al. 2020. Comprehensive flow cytometric reference intervals of leukocyte subsets from six study centers across Europe. Clin Exp Immunol. 202(3):363–378.
  • Puig P, Valero J. 2006. Count data distributions. J Am Stat Assoc. 101(473):332–340.
  • Pujol M, Barrios L, Puig P, Caballín MR, Barquinero JF. 2016. A new model for biological dose assessment in cases of heterogeneous exposures to ionizing radiation. Radiat Res. 185(2):151–162.
  • Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. 2010. the use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates. PLOS One. 5(11):e15544.
  • Roch-Lefèvre S, Mandina T, Voisin P, Gaëtan G, Mesa JEG, Valente M, Bonnesoeur P, García O, Voisin P, Roy L. 2010. Quantification of γ-H2AX Foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiat Res. 174(2):185–194.
  • Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146(5):905–916.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 273(10):5858–5868.
  • Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. 2007. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology. 242(1):244–251.
  • Rothkamm K, Barnard S, Ainsbury EA, Al-Hafidh J, Barquinero J-F, Lindholm C, Moquet J, Perälä M, Roch-Lefèvre S, Scherthan H, et al. 2013a. Manual versus automated γ-H2AX foci analysis across five European laboratories: can this assay be used for rapid biodosimetry in a large scale radiation accident. Mutat Res. 756(1–2):170–173.
  • Rothkamm K, Horn S, Scherthan H, Rössler U, De Amicis A, Barnard S, Kulka U, Lista F, Meineke V, Braselmann H, et al. 2013b. Laboratory intercomparison on the γ-H2AX foci assay. Radiat Res. 180(2):149–155.
  • Rothkamm K, Löbrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 100(9):5057–5062.
  • Rübe CE, Grudzenski S, Kühne M, Dong X, Rief N, Löbrich M, Rübe C. 2008. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: Implications for radiosensitivity testing. Clin Cancer Res. 14(20):6546–6555.
  • Sharma PM, Ponnaiya B, Taveras M, Shuryak I, Turner H, Brenner DJ. 2015. High throughput measurement of γ-H2AX DSB repair kinetics in a healthy human population. PLOS One. 10(3):e0121083.
  • Tanaka T, Halicka HD, Huang X, Traganos F, Darzynkiewicz Z. 2006. Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle. 5(17):1940–1945.
  • Vilenchik MM, Knudson AG. 2006. Radiation dose-rate effects, endogenous DNA damage, and signaling resonance. Proc Natl Acad Sci USA. 103(47):17874–17879.
  • Wojcik A, Oestreicher U, Barrios L, Vral A, Terzoudi G, Ainsbury E, Rothkamm K, Trompier F, Kulka U. 2017. The RENEB operational basis: complement of established biodosimetric assays. Int J Radiat Biol. 93(1):15–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.