1,168
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Low-dose radiation from CT examination induces DNA double-strand breaks and detectable changes of DNA methylation in peripheral blood cells

, ORCID Icon, &
Pages 197-208 | Received 07 Jul 2023, Accepted 25 Sep 2023, Published online: 20 Oct 2023

References

  • Antwih DA, Gabbara KM, Lancaster WD, Ruden DM, Zielske SP. 2013. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics. 8(8):839–848. doi:10.4161/epi.25498
  • Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, et al. 2020. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. Radiat Environ Biophys. 59(2):185–209. doi:10.1007/s00411-020-00837-y
  • Auvinen A, Cardis E, Blettner M, Moissonnier M, Sadetzki S, Giles G, Johansen C, Swerdlow A, Cook A, Fleming S, et al. 2022. Diagnostic radiological examinations and risk of intracranial tumours in adults—findings from the interphone study. Int J Epidemiol. 51(2):537–546. doi:10.1093/ije/dyab140
  • Banáth JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. 2010. Residual γH2AX foci as an indication of lethal DNA lesions. BMC Cancer. 10(1):4. doi:10.1186/1471-2407-10-4
  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67(1):1–48. doi:10.18637/jss.v067.i01
  • Becker BV, Kaatsch HL, Nestler K, Jakobi J, Schäfer B, Hantke T, Brockmann MA, Waldeck S, Port M, Ullmann R. 2022. Impact of medical imaging on the epigenome – low-dose exposure in the course of computed tomography does not induce detectable changes of DNA-methylation profiles in peripheral blood cells. Int J Radiat Biol. 98(5):980–985. doi:10.1080/09553002.2021.2004329
  • Beels L, Werbrouck J, Thierens H. 2010. Dose response and repair kinetics of gamma-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and gamma-radiation. Int J Radiat Biol. 86(9):760–768. doi:10.3109/09553002.2010.484479
  • Bergstedt J, Azzou SAK, Tsuo K, Jaquaniello A, Urrutia A, Rotival M, Lin DTS, MacIsaac JL, Kobor MS, Albert ML, et al. 2022. The immune factors driving DNA methylation variation in human blood. Nat Commun. 13(1):5895. doi:10.1038/s41467-022-33511-6
  • Berrington de González A, Darby S. 2004. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 363(9406):345–351. doi:10.1016/s0140-6736(04)15433-0
  • Bogdanova NV, Jguburia N, Ramachandran D, Nischik N, Stemwedel K, Stamm G, Werncke T, Wacker F, Dörk T, Christiansen H. 2021. Persistent DNA double-strand breaks after repeated diagnostic CT scans in breast epithelial cells and lymphocytes. Front Oncol. 11:634389. doi:10.3389/fonc.2021.634389
  • Calderón L, Schindler K, Malin SG, Schebesta A, Sun Q, Schwickert T, Alberti C, Fischer M, Jaritz M, Tagoh H, et al. 2021. Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation. Sci Immunol. 6(61):eabg5003. doi:10.1126/sciimmunol.abg5003
  • Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH, Li Y. 2014. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis. 5(10):e1437–e1437. doi:10.1038/cddis.2014.415
  • Ding A, Gao Y, Liu H, Caracappa PF, Long DJ, Bolch WE, Liu B, Xu XG. 2015. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol. 60(14):5601–5625. doi:10.1088/0031-9155/60/14/5601
  • Flavahan WA, Gaskell E, Bernstein BE. 2017. Epigenetic plasticity and the hallmarks of cancer. Science. 357(6348):eaal2380. doi:10.1126/science.aal2380
  • Fortin J-P, Triche TJ, Jr, Hansen KD. 2017. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 33(4):558–560. doi:10.1093/bioinformatics/btw691
  • Fukumoto W, Ishida M, Sakai C, Tashiro S, Ishida T, Nakano Y, Tatsugami F, Awai K. 2017. DNA damage in lymphocytes induced by cardiac CT and comparison with physical exposure parameters. Eur Radiol. 27(4):1660–1666. doi:10.1007/s00330-016-4519-8
  • Grudzenski S, Raths A, Conrad S, Rübe CE, Löbrich M. 2010. Inducible response required for repair of low-dose radiation damage in human fibroblasts. Proc Natl Acad Sci USA. 107(32):14205–14210. doi:10.1073/pnas.1002213107
  • Hall EJ, Giaccia AJ. 2018. Radiobiology for the radiologist. 8th ed. Philadelphia (USA): Wolters Kluwer. https://www.wolterskluwer.com/en/solutions/ovid/radiobiology-for-the-radiologist-500.
  • Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. 2012. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics [Internet]. 13(1). doi:10.1186/1471-2105-13-86
  • ICRP. 2005. Low-dose extrapolation of radiation-related cancer risk. Ann ICRP. 35(4):1–140.
  • Jakl L, Marková E, Koláriková L, Belyaev I. 2020. Biodosimetry of low dose ionizing radiation using DNA repair foci in human lymphocytes. Genes (Basel). 11(1):58. doi:10.3390/genes11010058
  • Kresovich JK, Xu Z, O'Brien KM, Shi M, Weinberg CR, Sandler DP, Taylor JA. 2022. Blood DNA methylation profiles improve breast cancer prediction. Mol Oncol. 16(1):42–53. doi:10.1002/1878-0261.13087
  • Kuefner MA, Grudzenski S, Schwab SA, Wiederseiner M, Heckmann M, Bautz W, Lobrich M, Uder M. 2009. DNA double-strand breaks and their repair in blood lymphocytes of patients undergoing angiographic procedures. Invest Radiol. 44(8):440. doi:10.1097/RLI.0b013e3181a654a5
  • Law P-P, Holland ML. 2019. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem. 63(6):717–726. doi:10.1042/EBC20190031
  • Lee Y, Kim YJ, Choi YJ, Lee JW, Lee S, Cho YH, Chung HW. 2015. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers. Int J Radiat Biol. 91(2):142–149. doi:10.3109/09553002.2015.969847
  • Li H, Chen R, Cai J, Cui X, Huang N, Kan H. 2018. Short-term exposure to fine particulate air pollution and genome-wide DNA methylation: a randomized, double-blind, crossover trial. Environ Int. 120:130–136. doi:10.1016/j.envint.2018.07.041
  • Lobrich M, Rief N, Kuhne M, Heckmann M, Fleckenstein J, Rube C, Uder M. 2005. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA. 102(25):8984–8989. doi:10.1073/pnas.0501895102
  • Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. 2021. Low dose ionizing radiation effects on the immune system. Environ Int. 149:106212. doi:10.1016/j.envint.2020.106212
  • Mah LJ, El-Osta A, Karagiannis TC. 2010. γ-H2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 24(4):679–686. doi:10.1038/leu.2010.6
  • Memon A, Rogers I, Paudyal P, Sundin J. 2019. Dental X-rays and the risk of thyroid cancer and meningioma: a systematic review and meta-analysis of current epidemiological evidence. Thyroid. 29(11):1572–1593. doi:10.1089/thy.2019.0105
  • Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. 2019. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 20(4):235–248. doi:10.1038/s41576-018-0092-0
  • Nasri Nasrabadi P, Martin D, Gharib E, Robichaud GA. 2022. The pleiotropy of PAX5 gene products and function. Int J Mol Sci. 23(17):10095. doi:10.3390/ijms231710095
  • NCRP, editor. 2020. Approaches for integrating radiation biology and epidemiology for enhancing low dose risk assessment. [Internet]. Bethesda: National Council on Radiation Protection and Measurements; [accessed 2022 Oct 17]. https://ncrponline.org/shop/reports/report-no-186-approaches-for-integrating-information-from-radiation-biology-and-epidemiology-to-enhance-low-dose-health-risk-assessment-2020/.
  • Nordlund J, Bäcklin CL, Wahlberg P, Busche S, Berglund EC, Eloranta M-L, Flaegstad T, Forestier E, Frost B-M, Harila-Saari A, et al. 2013. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 14(9):r105. doi:10.1186/gb-2013-14-9-r105
  • O'Hagan HM, Mohammad HP, Baylin SB. 2008. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLOS Genet. 4(8):e1000155. doi:10.1371/journal.pgen.1000155
  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, et al. 2012. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 380(9840):499–505. doi:10.1016/S0140-6736(12)60815-0
  • Phipson B, Maksimovic J, Oshlack A. 2016. missMethyl: an R package for analysing methylation data from Illuminas HumanMethylation450 platform. Bioinformatics. 32(2):286–288. doi:10.1093/bioinformatics/btv560
  • Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ. 2016. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17(1):208. doi:10.1186/s13059-016-1066-1
  • Popp HD, Meyer M, Brendel S, Prinzhorn W, Naumann N, Weiss C, Seifarth W, Schoenberg SO, Hofmann W-K, Henzler T, Fabarius A. 2016. Leukocyte DNA damage after reduced and conventional absorbed radiation doses using 3rd generation dual-source CT technology. Eur J Radiol Open. 3:134–137. doi:10.1016/j.ejro.2016.06.001
  • Pustovalova M, Astrelina ТA, Grekhova A, Vorobyeva N, Tsvetkova A, Blokhina T, Nikitina V, Suchkova Y, Usupzhanova D, Brunchukov V, et al. 2017. Residual γH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells. Aging. 9(11):2397–2410. doi:10.18632/aging.101327
  • Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. 2007. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology. 242(1):244–251. doi:10.1148/radiol.2421060171
  • Rothkamm K, Löbrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 100(9):5057–5062. doi:10.1073/pnas.0830918100
  • Sakane H, Ishida M, Shi L, Fukumoto W, Sakai C, Miyata Y, Ishida T, Akita T, Okada M, Awai K, et al. 2020. Biological effects of low-dose chest CT on chromosomal DNA. Radiology. 295(2):439–445. doi:10.1148/radiol.2020190389
  • Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM. 2002. Quantitative detection of 125IdU-induced DNA double-strand breaks with γ-H2AX antibody. Radiat Res. 158(4):486–492. doi:10.1667/0033-7587(2002)158[0486:QDOIID]2.0.CO;22.0.CO;2]
  • Sharma PM, Ponnaiya B, Taveras M, Shuryak I, Turner H, Brenner DJ. 2015. High throughput measurement of γH2AX DSB repair kinetics in a healthy human population. PLOS One. 10(3):e0121083. doi:10.1371/journal.pone.0121083
  • Storey JD, Bass AJ, Dabney A, Robinson D. 2022. qvalue: Q-value estimation for false discovery rate control [Internet]. http://github.com/jdstorey/qvalue.
  • Tachibana H, Daino K, Ishikawa A, Morioka T, Shang Y, Ogawa M, Matsuura A, Shimada Y, Kakinuma S. 2022. Genomic profile of radiation-induced early-onset mouse B-cell lymphoma recapitulates features of Philadelphia chromosome-like acute lymphoblastic leukemia in humans. Carcinogenesis. 43(7):693–703. doi:10.1093/carcin/bgac034
  • Tao SM, Zhou F, Schoepf UJ, Johnson AA, Lin ZX, Zhou CS, Lu GM, Zhang LJ. 2019. The effect of abdominal contrast-enhanced CT on DNA double-strand breaks in peripheral blood lymphocytes: an in vitro and in vivo study. Acta Radiol. 60(6):687–693. doi:10.1177/0284185118799513
  • Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. 2017. Low-dose ionizing radiation exposure, oxidative stress and epigenetic programing of health and disease. Radiat Res. 188(4.2):525–538. doi:10.1667/rr14587.1
  • Tomita M, Maeda M. 2015. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. J Radiat Res. 56(2):205–219. doi:10.1093/jrr/rru099
  • United Nations Environment Programme. 2016. Radiation effects and sources United Nations. [Internet]. https://www.un-ilibrary.org/content/books/9789210599597.
  • United Nations Scientific Committee on the Effects of Atomic Radiation. 2022a. Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2020/2021 Report, Volume I. New York (USA): United Nations. doi:10.18356/9789210010030
  • United Nations Scientific Committee on the Effects of Atomic Radiation. 2022b. Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2020/2021 Report, Volume III. New York (USA): United Nations. doi:10.18356/9789210010054
  • Unternaehrer E, Luers P, Mill J, Dempster E, Meyer AH, Staehli S, Lieb R, Hellhammer DH, Meinlschmidt G. 2012. Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF ) after acute psychosocial stress. Transl Psychiatry. 2(8):e150–e150. doi:10.1038/tp.2012.77
  • Vinnikov V, Belyakov O. 2022. Clinical applications of biological dosimetry in patients exposed to low dose radiation due to radiological, imaging or nuclear medicine procedures. Semin Nucl Med. 52(2):114–139. doi:10.1053/j.semnuclmed.2021.11.008
  • Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y. 2022. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenet. 14(1):154. doi:10.1186/s13148-022-01382-9
  • Xu Z, Niu L, Li L, Taylor JA. 2016. ENmix: a novel background correction method for illumina humanmethylation450 BeadChip. Nucleic Acids Res. 44(3):e20–e20. doi:10.1093/nar/gkv907
  • Yang P, Wang S, Liu D, Zhao H, Li G. 2020. DNA double-strand breaks of human peripheral blood lymphocyte induced by CT examination of oral and maxillofacial region. Clin Oral Investig. 24(12):4617–4624. doi:10.1007/s00784-020-03331-3
  • Zhou W, Laird PW, Shen H. 2017. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 45(4):e22. doi:10.1093/nar/gkw967