367
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Reasons why the idea that radiation exposures induce cancer needs to be revisited

ORCID Icon
Received 28 Aug 2023, Accepted 12 Mar 2024, Published online: 22 Apr 2024

References

  • Albert RE, Altshuler B. 1976. Assessment of environmental carcinogen risks in terms of life shortening. Environ Health Perspect. 13:91–94. doi:10.2307/3428242
  • Albert DM, Frayer WC, Black HE, Massicotte SJ, Sang DN, Soque J. 1986. The harderian gland: its tumors and its relevance to humans. Trans Am Ophthalmol Soc. 84:321–341.
  • Boice JDJr, Engholm G, Kleinerman RA, Blettner M, Stovall M, Lisco H, Moloney WC, Austin DF, Bosch A, Cookfair DL, et al. 1988. Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiat Res. 116(1):3–55. doi:10.2307/3577477
  • Bond VP, Cronkite EP, Lippincott SW, Shellabarger CJ. 1960. Studies on radiation-induced mammary gland neoplasia in the rat. III. Relation of the neoplastic response to dose of total-body radiation. Radiat Res. 12(3):276–285. doi:10.2307/3570916
  • Brenner AV, Preston DL, Sakata R, Cologne J, Sugiyama H, Utada M, Cahoon EK, Grant E, Mabuchi K, Ozasa K. 2022. Comparison of all solid cancer mortality and incidence dose-response in the Life Span Study of Atomic bomb survivors, 1958-2009. Radiat Res. 197(5):491–508. doi:10.1667/RADE-21-00059.1
  • Cancer Genome Atlas Network. 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487(7407):330–337. doi:10.1038/nature11252
  • Chaturvedi AK, Engels EA, Gilbert ES, Chen BE, Storm H, Lynch CF, Hall P, Langmark F, Pukkala E, Kaijser M, et al. 2007. Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst. 99(21):1634–1643. doi:10.1093/jnci/djm201
  • Chung HY, Kim HJ, Kim KW, Choi JS, Yu BP. 2002. Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech. 59(4):264–272. doi:10.1002/jemt.10203
  • Cohen EP, Farese AM, Parker GA, Kane MA, MacVittie TJ. 2020. Lack of cellular inflammation in a non-human primate model of radiation nephropathy. Health Phys. 119(5):588–593. doi:10.1097/HP.0000000000001329
  • Dobson RL, Kwan TC. 1977. The tritium RBE at low-level exposure—variation with dose, dose rate, and exposure duration. Curr Top Radiat Res Q. 12:44–62.
  • Espinoza JA, Bizama C, García P, Ferreccio C, Javle M, Miquel JF, Koshiol J, Roa JC. 2016. The inflammatory inception of gallbladder cancer. Biochim Biophys Acta. 1865(2):245–254. doi:10.1016/j.bbcan.2016.03.004
  • Fane M, Weeraratna AT. 2020. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 20(2):89–106. doi:10.1038/s41568-019-0222-9
  • Fry RJM, Staffeldt E, Tyler SA. 1978. Some problems arising in analysis of large-scale animal irradiation experiments. Environ Int. 1(6):361–366. doi:10.1016/0160-4120(78)90015-6
  • Grant EJ, Yamamura M, Brenner AV, Preston DL, Utada M, Sugiyama H, Sakata R, Mabuchi K, Ozasa K. 2021. Radiation risks for the incidence of kidney, bladder and other urinary tract cancers: 1958–2009. Radiat Res. 195(2):140–148. doi:10.1667/RADE-20-00158.1
  • Guttman PH, Kohn HI. 1960. Progressive intercapillary glomerulosclerosis in the mouse, rat, and Chinese hamster, associated with aging and x-ray exposure. Am J Pathol. 37(3):293–307.
  • Harris RE, Alshafie GA, Abou-Issa H, Seibert K. 2000. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 60(8):2101–2103.
  • Kleinerman RA, Boice JDJr, Storm HH, Sparen P, Andersen A, Pukkala E, Lynch CF, Hankey BF, Flannery JT. 1995. Second primary cancer after treatment for cervical cancer. An international cancer registries study. Cancer. 76(3):442–452. doi:10.1002/1097-0142(19950801)76:3<442::AID-CNCR2820760315>3.0.CO;2-L
  • Kohn HI, Guttman PH. 1963. Age at exposure and the late effects of x-rays. Survival and tumor incidence in CAF mice irradiated at 1 to 2 years of age. Radiat Res. 18(3):348–373. doi:10.2307/3571501
  • Lindop PJ, Rotblat J. 1962. The age factor in the susceptibility of man and animals to radiation. I. The age factor in radiation sensitivity in mice. Br J Radiol. 35(409):23–31. doi:10.1259/0007-1285-35-409-23
  • Mabuchi K, Preston DL, Brenner AV, Sugiyama H, Utada M, Sakata R, Sadakane A, Grant EJ, French B, Cahoon EK, et al. 2021. Risk of prostate cancer incidence among atomic bomb survivors: 1958–2009. Radiat Res. 195(1):66–76. doi:10.1667/RR15481.1
  • Maisin JR, Wambersie A, Gerber GB, Mattelin G, Lambiet-Collier M, De Coster B, Gueulette J. 1991. Life-shortening and disease incidence in mice after exposure to gamma rays or high-energy neutrons. Radiat Res. 128(1 Suppl):S117–S123.
  • Nakamura N. 2005. A hypothesis: radiation-related leukemia is mainly attributable to the small number of people who carry pre-existing clonally expanded preleukemic cells. Radiat Res. 163(3):258–265. doi:10.1667/rr3311
  • Nakamura N. 2021. Reexamining the role of tissue inflammation in radiation carcinogenesis: a hypothesis to explain an earlier onset of cancer. Int J Radiat Biol. 97(10):1341–1351. doi:10.1080/09553002.2021.1955998
  • Nakamura N. 2023. Radiation-induced increases in cancer mortality result from an earlier onset of the disease in mice and atomic bomb survivors. Int J Radiat Biol. 99(8):1139–1147. doi:10.1080/09553002.2023.2158246
  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K. 2007. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 168(1):1–64. doi:10.1667/RR0763.1
  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. 2003. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 160(4):381–407.
  • Rombouts AJM, Hugen N, van Beek JJP, Poortmans PMP, de Wilt JHW, Nagtegaal ID. 2018. Does pelvic radiation increase rectal cancer incidence? - A systematic review and meta-analysis. Cancer Treat Rev. 68:136–144. doi:10.1016/j.ctrv.2018.05.008
  • Sadakane A, French B, Brenner AV, Preston DL, Sugiyama H, Grant EJ, Sakata R, Utada M, Cahoon EK, Mabuchi K, et al. 2019. Radiation and risk of liver, biliary tract, and pancreatic cancers among atomic bomb survivors in Hiroshima and Nagasaki: 1958–2009. Radiat Res. 192(3):299–310. doi:10.1667/RR15341.1
  • Sasaki S, Fukuda N. 2005. Temporal variation of excess mortality rate from solid tumors in mice irradiated at various ages with gamma rays. J Radiat Res. 46(1):1–19. doi:10.1269/jrr.46.1
  • Shang Y, Kakinuma S, Yamauchi K, Morioka T, Kokubo T, Tani S, Takabatake T, Kataoka Y, Shimada Y. 2014. Cancer prevention by adult-onset calorie restriction after infant exposure to ionizing radiation in B6C3F1 male mice. Int J Cancer. 135(5):1038–1047. doi:10.1002/ijc.28751
  • Shellabarger CJ, Chmelevsky D, Kellerer AM. 1980. Induction of mammary neoplasms in the Sprague-Dawley rat by 430keV neutrons and X-rays. J Natl Cancer Inst. 64(4):821–833.
  • Storer JB. 1965. Radiation resistance with age in normal and irradiated population of mice. Radiat Res. 25(3):435–459. doi:10.2307/3571760
  • Storer JB. 1986. Carcinogenic effects: an overview. In: AC Upton, RE Albert, FJ Burns, RE Shore, editors. Radiation carcinogenesis. New York: Elsevier; p. 11–22.
  • Takahashi T, Watanabe H, Dohi K, Ito A. 1992. 252Cf relative biological effectiveness and inheritable effect of fission neutrons in mouse liver tumorigenesis. Cancer Res. 52(7):1948–1953.
  • Tanaka S, Tanaka IB, 3rd, Sasagawa S, Ichinohe K, Takabatake T, Matsushita S, Matsumoto T, Otsu H, Sato F. 2003. No lengthening of life span in mice continuously exposed to gamma rays at very low dose rates. Radiat Res. 160(3):376–379. doi:10.1667/rr3042
  • Tanaka IB, 3rd, Tanaka S, Ichinohe K, Matsushita S, Matsumoto T, Otsu H, Oghiso Y, Sato F. 2007. Cause of death and neoplasia in mice continuously exposed to very low dose rates of gamma rays. Radiat Res. 167(4):417–437. doi:10.1667/RR0728.1
  • Tanaka IB, 3rd, Komura J, Tanaka S. 2017. Pathology of serially sacrificed female B6C3F1 mice continuously exposed to very low-dose-rate gamma rays. Radiat Res. 187(3):346–360. doi:10.1667/RR14617.1
  • Ullrich RL, Jernigan MC, Storer JB. 1977. Neutron carcinogenesis. Dose and dose-rate effects in BALB/c mice. Radiat Res. 72(3):487–498.
  • Ullrich RL, Storer JB. 1979. Influence of γ irradiation on the development of neoplastic disease in mice. III Dose-rate effects. Radiat Res. 80(2):325–342.
  • Upton AC, Kimball AW, Furth J, Christenberry KW, Benedict WH. 1960. Some delayed effects of atom-bomb radiations in mice. Cancer Res. 20(2):1–60.
  • Weiss HA, Darby SC, Doll R. 1994. Cancer mortality following X-ray treatment for ankylosing spondylitis. Int J Cancer. 59(3):327–338. doi:10.1002/ijc.2910590307
  • Yoshida K, Inoue T, Nojima K, Hirabayashi Y, Sado T. 1997. Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc Natl Acad Sci U S A. 94(6):2615–2619. doi:10.1073/pnas.94.6.2615