58
Views
110
CrossRef citations to date
0
Altmetric
Original Article

DNA Damages Processed by Base Excision Repair: Biological Consequences

Pages 579-589 | Received 10 Apr 1994, Accepted 20 Jun 1994, Published online: 03 Jul 2009

References

  • Ames B.N. Endogenous oxidative DNA damage, aging, and cancer. Free Radical Research Communications 1989; 7: 121–128
  • Asahara H., Wistort P.M., Bank J.F., Bakerian R.H., Cunningham R.P. Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 1989; 28: 4444–4449
  • Au K.G., Clark S., Miller J.H., Modrich P. Escherichia coli mutY gene encodes an adenine glycosylase active on G-A mispairs. Proceedings of the National Academy of Sciences, USA 1989; 86: 8877–8881
  • Ayaki H., Higo K.-I., Yamamoto O. Specificity of ionizing radiation-induced mutagenesis in the lac gene of single-stranded phage M13mp10 DNA. Nucleic Acids Research 1986; 14: 5013–5018
  • Bailly V., Verly W.G. Possible roles of β-elimination and δ-elimination reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites in mammalian cells. Biochemical Journal 1988; 253: 553–559
  • Basu A.K., Loechler E.L., Leadon S.A., Essigmann J.M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Proceedings of the National Academy of Sciences, USA 1989; 86: 7677–7681
  • Boiteux S., O'Connor T.R., Laval J. Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO Journal 1987; 6: 3177–3183
  • Breimer L.H. Ionizing radiation-induced mutagenesis. British Journal of Cancer 1988; 57: 6–18
  • Breimer L.H. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Molecular Carcinogenesis 1990; 3: 188–197
  • Chan E., Weiss B. Endonuclease IV of Escherichia coli is induced by paraquat. Proceedings of the National Academy of Sciences, USA 1987; 84: 3189–3193
  • Chen D.S., Herman T., Demple B. Two distinct human DNA diesterases that hydrolyze 3′-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Research 1991; 19: 5907–5914
  • Chen D.S., Law C., Keng P. Reduction of radiation cytotoxicity by human apurinic endonuclease in a radiation-sensitive Escherichia coli mutant. Radiation Research 1993; 135: 405–410
  • Chen Y.-H., Bogenhagen D.F. Effects of DNA lesions on transcription elongation by T7 RNA polymerase. Journal of Biological Chemistry 1993; 268: 5849–5855
  • Cheng K.C., Chaill D.S., Kasai H., Nishimura S., Loeb L.A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G → T and A → C substitutions. Journal of Biological Chemistry 1992; 267: 166–172
  • Cunningham R.P., Saporito S.M., Spitzer S.G., Weiss B. Endonuclease IV (nfo) mutant of Escherichia coli. Journal of Bacteriology 1986; 168: 1120–1127
  • Cunningham R.P., Weiss B. Endonuclease III (nth) mutants of Escherichia coli. Proceedings of the National Academy of Sciences, USA 1985; 82: 474–478
  • Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annual Review of Biochemistry 1994; 63: 915–948
  • Demple B., Herman T., Chen D.S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proceedings of the National Academy of Sciences, USA 1991; 88: 11450–11454
  • Demple B., Johnson A., Fung D. Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proceedings in the National Academy of Sciences, USA 1986; 83: 7731–7735
  • Dianov G., Price A., Lindahl T. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Molecular and Cellular Biology 1992; 12: 1605–1612
  • Dizdaroglu M. Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implication for assessing DNA repair processes. Analytical Biochemistry 1985; 144: 593–603
  • Dizdaroglu M. Measurement of radiation-induced damage to DNA at the molecular level. International Journal of Radiation Biology 1992; 61: 175–183
  • Dizdaroglu M., Laval J., Boiteux S. Substrate specificity of the Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 1993; 32: 12105–12111
  • Doetsch P.W., Cunningham R.P. The enzymology of apurinic/apyrimidinic endonucleases. Mutation Research 1990; 236: 173–201
  • Duncan B.K., Weiss B. Specific mutator effects of ung (uracil-DNA glycosylase) mutation in Escherichia coli. Journal of Bacteriology 1982; 151: 750–755
  • Elia M.C., DeLuca J.G., Bradley M.O. Significance and measurement of DNA double strand breaks in mammalian cells. Pharmaceutical Therapy 1991; 51: 291–327
  • Evans J., Maccabee M., Hatahet Z., Courcelle J., Bockrath R., Ide H., Wallace S.S. Thymine ring saturation and fragmentation products: lesion bypass, misinsertion and implications for mutagenesis. Mutation Research 1993; 299: 147–156
  • Fornace A.J., Jr. Mammalian genes induced by radiation; activation of genes associated with growth control. Annual Review of Genetics 1992; 26: 507–526
  • Frankenberg-Schwager M. Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiation and Environmental Biophysics 1990; 29: 273–292
  • Franklin W.A., Lindahl T. DNA deoxyribophosphodiesterase. EMBO Journal 1988; 7: 3617–3622
  • Fuciarelli A.F., Wegher B.J., Blakely W.F., Dizdaroglu M. Yields of radiation-induced base products in DNA: effects of DNA conformation and gassing conditions. International Journal of Radiation 1990; 58: 397–415
  • Grafstrom R.H., Shaper N.L., Grossman L. Human placental apurinic/apyrimidinic endonuclease. Journal of Biological Chemistry 1982; 257: 13459–13464
  • Grosovsky A.J., DeBoer J.G., DeJong P.J., Drobetsky E.A., Glickman B.W. Base substitutions, frameshifts, and small deletions constitute ionizing radiation-induced point mutations in mammalian cells. Proceedings of the National Academy of Sciences, USA 1988; 85: 185–188
  • Guschlbauer W., Duplaa A.-M., Guy A., Teoule R., Fazakerley G.V. Structure and in vitro replication of DNA templates containing 7,8-dihydro-8-oxoadenine. Nucleic Acids Research 1991; 19: 1753–1758
  • Hanawalt P.C. Heterogeneity of DNA repair at the gene level. Mutation Research 1991; 247: 203–211
  • Hanawalt P., Mellon I. Stranded in an active gene. Current Biology 1993; 3: 67–69
  • Hatahet Z., Kow Y.W., Purmal A.A., Cunningham R.P., Wallace S.S. New substrates for old enzymes: 5-hydroxy-2′-deoxycytidine and 5-hydroxy-2′-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase while 5-hydroxy-2′-deoxyuridine is a substrate for uracil DNA N-glycosylase. Journal of Biological Chemistry 1994a; 269: 18814–18820
  • Hatahet Z., Purmal A.A., Wallace S.S. (1994b) Oxidative DNA lesions as blocks to in vitro transcription by phage T7 RNA polymerase. DNA Damage: Effects on DNA Structure and Protein Recognition. The New York Academy of Sciences Conferences, Burlington, VT, July–August, 31–41993, S.S. Wallace, B. Van Houten, Y.W. Kow. New York, In Annals of the New York Academy of Sciences Vol. 726
  • Hayes R.C., Petrullo L.A., Huang H., Wallace S.S., LeClerc J.E. Oxidative damage in DNA: lack of mutagenicity by thymine glycol lesions. Journal of Molecular Biology 1988; 201: 239–246
  • Henner W.D., Grunberg S.M., Haseltine W.A. Enzyme action at 3′ termini of ionizing radiation-induced DNA strand-breaks. Journal of Biological Chemistry 1983 b; 258: 15198–15205
  • Henner W.D., Rodriguez L.O., Hecht S.M., Haseltine W.A. γ-ray induced deoxyribonucleic acid strand breaks. 3′ glycolate termini. Journal of Biological Chemistry 1983a; 258: 711–713
  • Hockenbery D.M., Oltvai Z.N., Yin X.-M., Milliman C.L., Korsmeyer S.J. Bcl-2 functions in an antioxidant pathway to prevent apopotosis. Cell 1993; 75: 241–251
  • Htun H., Johnston B.H. Mapping adducts of DNA structural probes using transcription and primer extension approaches. Methods of Enzymology 1992; 212: 272–295
  • Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Progress in Nucleic Acid Research and Molecular Biology 1985; 32: 115–154
  • Ide H., Kow Y.W., Wallace S.S. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Research 1985; 13: 8032–8052
  • Ide H., Petrullo L.A., Hatahet Z., Wallace S.S. Processing of DNA base damage by DNA polymerases. Journal of Biological Chemistry 1991; 266: 1469–1477
  • Ide H., Tedzuka K., Shimidzi H., Kimura Y., Purmal A.A., Wallace S.S., Kow Y.W. α-Deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for E. coli endonuclease IV. Biochemistry 1994; 33: 7842–7847
  • Jaberaboansari A., Dunn W.C., Preston R.J., Mitra S., Waters L.C. Mutations induced by ionizing radiation in a plasmid replicated in human cells. Radiation Research 1991; 127: 202–210
  • Johnson A.W., Demple B. Yeast DNA Diesterase for 3′-fragments of deoxyribose: purification and physical properties of a repair enzyme for oxidative DNA damage. Journal of Biological Chemistry 1988; 263: 18009–18016
  • Kane C.M., Linn S. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. Journal of Biological Chemistry 1981; 256: 18017–18022
  • Kapp D.S., Smith K.C. Repair of radiation-induced damage in Escherichia coli. II. Effect of rec and uvr mutations on radiosensitivity, and repair of x-ray-induced single-strand breaks in deoxyribonucleic acid. Journal of Bacteriology 1970; 103: 49–54
  • Kastan M.B., Zhan Q., El-Deiry W.S., Carrier F., Jacks T., Walsh W.V., Plunkett B.S., Vogelstein B., Fornace A.J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-teleangiectasia. Cell 1992; 71: 587–597
  • Kataoka H., Sekiguchi M. Are purine bases enzymatically inserted into depurinated DNA in Escherichia coli?. Journal of Biochemistry 1982; 92: 971–973
  • Kow Y.W., Faundez G., Melamede R.J., Wallace S.S. Processing of model single-strand breaks in φX-174 RF transfecting DNA by Escherichia coli. Radiation Research 1991; 126: 357–366
  • Kow Y.W., Wallace S.S. Exonuclease III recognizes urea residues in oxidized DNA. Proceedings of the National Academy of Sciences, USA 1985; 82: 8354–8358
  • Kow Y.W., Wallace S.S., Van Houten B. UvrABC nuclease complex repairs thymine glycol, an oxidative base damage. Mutation Research 1990; 235: 147–156
  • Kunkel T.A. Mutational specificity of depurination. Proceedings of the National Academy of Sciences, USA 1984; 81: 1494–1498
  • Laspia M.F., Wallace S.S. Excision repair of thymine glycols, urea residues and apurinic sites in Escherichia coli. Journal of Bacteriology 1988; 170: 3359–3366
  • Laspia M.F., Wallace S.S. SOS processing of unique oxidative DNA damages in Escherichia coli. Journal of Molecular Biology 1989; 207: 53–60
  • Lawrence C.W., Borden A., Banerjee S.K., LeClerc J.E. Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucleic Acids Research 1990; 18: 2153–2157
  • Leadon S.A., Cooper P.K. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in cockayne syndrome. Proceedings of the National Academy of Sciences, USA 1993; 90: 10499–10503
  • Leadon S.A., Lawrence D.A. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. Journal of Biological Chemistry 1992; 267: 23175–23182
  • Lee J.M., Bernstein A. p53 mutations increase resistance to ionizing radiation. Proceedings of the National Academy of Sciences, USA 1993; 90: 5742–5746
  • Levin J.D., Johnson A.W., Demple B. Homogeneous Escherichia coli endonuclease IV. Journal of Biological Chemistry 1988; 263: 8066–8071
  • Lin J.-J., Sancar A. A new mechanism for repairing oxidative damge to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. Biochemistry 1989; 28: 7979–7984
  • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362: 709–715
  • Lindahl T., Barnes D.E. Mammalian DNA ligases. Annual Review of Biochemistry 1992; 61: 251–281
  • Loeb L.A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Research 1991; 51: 3075–3079
  • Loeb L.A., Preston B.D. Mutagenesis by apurinic/apyrimidinic sites. Annual Review of Genetics 1986; 20: 201–230
  • Lowe S.W., Schmitt E.M., Smith S.W., Osborne B.A., Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849
  • Maccabee M., Evans J.S., Glackin M., Hatahet Z., Wallace S.S. Pyrimidine ring fragmentation products: effects of lesion structure and sequence context on mutagenesis. Journal of Molecular Biology 1994; 236: 514–530
  • Maki H., Sekigushi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992; 355: 273–275
  • Melamede R.J., Hatahet Z., Kow Y.W., Ide H., Wallace S.S. Isolation and characterization of endonuclease VIII from Escherichia coli. Biochemistry 1994; 33: 1255–1264
  • Meuth M. The structure of mutation in mammalian cells. Biochimica et Biophysica Acta 1990; 1032: 1–17
  • Michaels M.L., Miller J.H. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Journal of Bacteriology 1992; 174: 6321–6325
  • Michaels M.L., Pham L., Nghiem Y., Cruz C., Miller J.H. MutM, a protein that prevents G•C→T[cul]A tranversion, is formamidopyrimidine-DNA glycosylase. Nucleic Acids Research 1991; 19: 3629–3632
  • Moore P.D., Strauss B.S. Sites of inhibition of in vitro DNA synthesis in carcinogen-and UV-treated φX 174 DNA. Nature (London) 1979; 278: 664–666
  • Moriya M., Ou C., Bodepudi V., Johnson F., Takeshita M., Grollman A.P. site-specific mutagenesis using a gapped duplex vector: as study of Translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutation Research, DNA Repair 1991; 254: 281–288
  • Mosbaugh D.W., Linn S. Further characterization of human fibroblast apurinic/apyrimidinic DNA endonucleases. The definition of two mechanistic classes of enzyme. Journal of Biological Chemistry 1982; 255: 11743–11752
  • Murray A.W. Creative blocks: cell-cycle checkpoints and feedback controls. Nature 1992; 359: 599–604
  • Neto J.B.C., Gentil A., Cabral R.E.C., Sarasin A. Mutation spectrum of heat-induced abasic sites on a single-stranded shuttle vector replicated in mammalian cells. Journal of Biological Chemistry 1992; 267: 19718–19723
  • Olsen L.C., Aasland R., Wittwer C.U., Krokan H.E., Helland D.E. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO Journal 1989; 8: 3121–3125
  • Price A., Lindahl T. Enzymatic release of 5′-terminal deoxyribose phosphate residues from damaged DNA in human cells. Biochemistry 1991; 30: 8631–8637
  • Popoff S.C., Spira A.I., Johnson A.W., Demple B. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proceedings of the National Academy of Sciences, USA 1990; 87: 4193–4197
  • Purmal A.A., Kow Y.W., Wallace S.S. Major oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro. Nucleic Acids Research 1994; 22: 72–78
  • Ramotar D., Popoff S.C., Gralla E.B., Demple B. Cellular role of yeast Apnl apurinic endonuclease/3′-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Molecular and Cellular Biology 1991; 11: 4537–4544
  • Reid T.M., Loeb L.A. Tandem double CC→TT mutations are produced by reactive oxygen species. Proceedings of the National Academy of Sciences, USA 1993; 90: 3904–3907
  • Robson C.N., Hickson I.D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Research 1991; 19: 5519–5523
  • Robson C.N., Milne A.M., Pappin D.J.C., Hickson I.D. Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial repair enzymes. Nucleic Acids Research 1991; 19: 1087–1092
  • Rogers S.G., Weiss B. Cloning of the exonuclease III gene of Escherichia coli. Gene 1980; 11: 187–195
  • Salganik R.I., Dianov G.L. Molecular mechanisms of the formation of DNA double-strand breaks and induction of genomic rearrangements. Mutation Research 1992; 266: 163–170
  • Sander M., Lowenhaupt K., Lane W.S., Rich A. Cloning and characterization of Rrp1, the gene encoding Drosophila strand transferase: carboxyterminal homology to DNA repair endo/exonucleases. Nucleic Acids Research 1991; 19: 4523–4529
  • Sandigursky M., Franklin W.A. DNA deoxyribophosphodiesterase of Escherichia coli is associated with exonuclease I. Nucleic Acids Research 1992; 20: 4699–4703
  • Sankaranarayanan K. Ionizing radiation and genetic risks. III. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mutation Research 1991; 258: 75–97
  • Scicchitano D.A., Hanawalt P.C. Repair of N-methylpurines in specific DNA sequences in chinese hamster ovary cells: absence of strand specificity in the dihydrofolate reductase gene. Proceedings of the National Academy of Sciences, USA 1989; 86: 3050–3054
  • Seki S., Akiyama K., Watanabe S., Hatsushika M., Ikeda S., Tsutani K. cDNA and deduced amino acid sequence of a mouse DNA repair enzyme (APEX nuclease) with significant homology to Escherichia coli exonuclease III. Journal of Biological Chemistry 1991; 266: 20797–20802
  • Seki S., Hatsushika M., Watanabe S., Akiyama K., Nagao K., Tsutsui K. cDNA cloning, sequencing, expression and possible domain structure of human APEX nuclease homologous to Escherichia coli exonuclease III. Biochemica et Biophysica Acta 1992; 1131: 287–299
  • Selby C.P., Sancar A. Molecular mechanism of transcription-repair coupling. Science 1993; 260: 53–58
  • Shibutani S., Bodepudi V., Johnson F., Grollman A.P. Translesion synthesis on DNA templates containing 8-oxo-7,8-dihydrodeoxyadenosine. Biochemistry 1993; 32: 4615–4621
  • Shibutani S., Takeshita M., Grollman A.P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991; 349: 431–434
  • Strauss B.S. The origin of point mutations in human tumor cells. Cancer Research 1992; 52: 249–253
  • Tchou J., Kasai H., Shibutani S., Chung M.-H., Laval J., Grollman A.P., Nishimura S. 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proceedings of the National Academy of Sciences, USA 1991; 88: 4690–4694
  • Teoule R. Radiation-induced DNA damage and its repair. International Journal of Radiation Biology 1987; 51: 573–589
  • Tindall K.R., Stein J., Hutchinson F. Changes in DNA base sequence induced by gamma-ray mutagenesis of lambda phage and prophage. Genetics 1988; 118: 551–560
  • Tkeshelashvili L.K., McBride T., Spence K., Loeb L.A. Mutation spectrum of copper-induced DNA damage. Journal of Biological Chemistry 1991; 266: 6401–6406
  • Tudek B., Boiteux S., Laval J. Biological properties of imidazole ring-opened N7-methylguanine in M13mp18 phage DNA. Nucleic Acids Research 1992; 20: 3079–3084
  • Van der Schueren E., Youngs D.A., Smith K.C. Influence of a uvrD mutation on survival and repair of x-irradiated Escherichia coli K-12 cells. International Journal of Radiation Biology 1977; 31: 507–518
  • Verly W.G., Gossard F., Crine P. In vitro repair of apurinic sites in DNA. Proceedings of the National Academy of Sciences, USA 1974; 71: 2273–2275
  • Wagner J.R., Hu C.-C., Ames B.N. Endogenous oxidative damage of deoxycytidine in DNA. Proceedings of the National Academy of Sciences, USA 1992; 89: 3380–3384
  • Wallace S.S. The biological consequences of oxidized DNA bases. British Journal of Cancer 1987; 55: 118–128
  • Wallace S.S. Apurinic endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environments and Molecular Mutagenesis 1988; 12: 431–477
  • Wallace S.S., Ide H. Structure/function relationships involved in the biological consequences of pyrimidine ring saturation and fragmentation products. Ionizing Radiation Damage to DNA: Molecular Aspects, S.S. Wallace, R. Painter. Wiley-Liss, New York 1990; 1–15, In
  • Wallace S.S., Ide H., Kow Y.W., Laspia M.F., Melamede R.J., Petrullo L.A., LeClerc J.E. Processing of oxidative DNA base damage in Escherichia coli. Mechanisms and Consequences of DNA Damage Processing, E.C. Friedberg, P. Hanawalt. Liss, New York 1988; 151–157, In
  • Ward J.F. DNA Damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and repairability. Progress in Nucleic Acid Research and Molecular Biology 1988; 35: 95–125
  • Waters L.C., Sikpi M.O., Preston R.J., Mitra S., Jaberaboansari A. Mutations induced by ionizing radiation in a plasmid replicated in human cells. I. Similar nonrandom distribution of mutations in unirradiated and x-irradiated DNA. Radiation Research 1991; 127: 190–201
  • Weiss B., Cunningham R.P., Chan E., Tsaneva I.R. AP endonucleases of Escherichia coli. Mechanisms and Consequences of DNA Damage Processing. Liss, New York 1988; 133–142, In
  • West S.C. Enzymes and molecular mechanisms of genetic recombination. Annual Review of Biochemistry 1992; 61: 603–640
  • Williams G.T., Smith C.A. Molecular regulation of apoptosis: genetic controls on cell death. Cell 1993; 74: 777–779
  • Wood M.L., Dizdaroglu M., Gajewski E., Essigmann J.M. Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 1990; 29: 7024–7032
  • Wood M.L., Esteve A., Morningstar L., Kuziembk M., Essigmann J.M. Genetic effects of oxidative DNA damage: comparative mutagenesis of 7,8-dihydro-8-oxoguanine and 7,8-dihydro-8-oxoadenine in Escherichia coli. Nucleic Acids Research 1992; 20: 6023–6032
  • Xanthoudakis S., Miao G.G., Curran T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proceedings of the National Academy of Sciences, USA 1994; 91: 23–27
  • Xanthoudakis S., Miao G.G., Wang F., Pan Y.-C.E., Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO Journal 1992; 11: 3323–3335
  • Zhou W., Doetsch P.W. Effects of abasic sites and DNA single-stranded breaks on prokaryotic RNA polymerases. Proceedings of the National Academy of Sciences, USA 1993; 90: 6601–6605

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.