165
Views
4
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Physiological effects of nanosilver on vegetative mycelium, conidia and the development of the entomopathogenic fungus, Isaria fumosorosea

, &
Pages 873-887 | Received 21 Oct 2013, Accepted 11 Feb 2015, Published online: 07 Apr 2015

References

  • Arora, S., Jain, J., Rajwade, J. M., & Paknikar, K. M. (2009). Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 236, 310–318. doi:10.1016/j.taap.2009.02.020
  • Bouwmeester, H., Poortman, J., Peters, R. J., Wijma, E., Kramer, E., Makama, S., … Hendriksen, P. J. M. (2011). Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano, 5, 4091–4103. doi:10.1021/nn2007145
  • Bragg, P. D., & Rainnie, D. J. (1974). The effect of silver ions on the respiratory chains of Escherichia coli. Canadian Journal of Microbiology, 20, 883–889. doi:10.1139/m74-135
  • Braydich-Stolle, L. K., Lucas, B., Schrand, A., Murdock, R. C., Lee, T., Schlager, J. J., … Hofmann, M. C. (2010). Silver nanoparticles disrupt gdnf/fyn kinase signaling in spermatogonial stem cells. Toxicological Sciences, 2, 577–589. doi:10.1093/toxsci/kfq148
  • Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management, 29, 2587–2595. doi:10.1016/j.wasman.2009.04.001
  • Chen, H., Seiber, J. N., & Hotze, M. (2014). ACS Select on nanotechnology in food and agriculture: a perspective on implications and applications. Journal of Agricultural and Food Chemistry, 62, 1209–1212. doi:10.1021/jf5002588
  • Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie (International Ed. in English), 52, 1636–1653. doi:10.1002/anie.201205923
  • European Commission (EC). (2013, October 3). Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Second regulatory review on nanomaterials, Brussels, COM(2012) 572 final.
  • Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52, 662–668. doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  • Foldbjerg, R., Dang, D. A., & Autrup, H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, a549. Archives of Toxicology, 85, 743–750. doi:10.1007/s00204-010-0545-5
  • Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A. & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine, 5, 382–386. doi:10.1016/j.nano.2009.06.005
  • Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16, 8894–8918. doi:10.3390/molecules16108894
  • Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781–9792. doi:10.1021/jf302154y
  • Gorczyca, A., Kasprowicz, M. J., & Lemek, T. (2009). Physiological effect of multi-walled carbon nanotubes (MWCNTs) on conidia of the entomopathogenic fungus, Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes). Journal of Environmental Science and Health Part A, 44, 1592–1597. doi:10.1080/10934520903263603
  • Gorczyca, A., Kasprowicz, M. J., & Lemek, T. (2015). Bioactivity of MWCNT in conidia of entomopathogenic fungus Isaria fumosorosea. Water, Air, and Soil Pollution, 226, 75. doi:10.1007/s11270-015-2350-5
  • Gorczyca, A., Pociecha, E., Kasprowicz, M. & Niemiec, M. (2015). Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. European Journal of Plant Pathology. Advance online publication. doi:10.1007/s10658-015-0608-9
  • Gorczyca, A., Warszewska, M., Kasprowicz, M., Niemiec, M., & Pociecha, E. (2013). Nanosilver: Safe or dangerous plant protection? Acta Biologica Cracoviensia Botanica, 55(Suppl. 2), 16.
  • Goswami, A., Roy, I., Sengupta, S., & Debnath, N. (2010). Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films, 19, 1252–1257. doi:10.1016/j.tsf.2010.08.079
  • Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology, 43, 9216–9222. doi:10.1021/es9015553
  • Haase, A., Rott, S., Mantion, A., Graf, P., Plendl, J., Thünemann, A. F., … Reiser, G. (2012). Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses. Toxicological Sciences, 126, 457–468. doi:10.1093/toxsci/kfs003
  • Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., … Kleinsasser, N. (2011). Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicological Letters, 201, 27–33. doi:10.1016/j.toxlet.2010.12.001
  • Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I., & Gu, M. B. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small, 4, 746–750. doi:10.1002/smll.200700954
  • Jo, K. Y., Kim, H. B., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93, 1037–1043. doi:10.5941/MYCO.2012.40.1.053
  • Johnston, H. J., Hutchison, G., Christensen, F. M., Peters, S., Hankin, S., & Stone, V. (2010). A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology, 4, 328–346. doi:10.3109/10408440903453074
  • Kah, M., Beulke, S., Tiede, K., & Hofmann, T. (2013). Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology, 43, 1823–1867. doi:10.1080/10643389.2012.671750
  • Kashyap, P. L., Kumar, S., Srivastava, A. K., & Sharma, A. K. (2013). Myconanotechnology in agriculture: A perspective. World Journal of Microbiology and Biotechnology, 29, 191–207. doi:10.1007/s11274-012-1171-6
  • Kasprowicz, M. J., Gorczyca, A., & Frandsen, R. J. N. (2013). The effect of nanosilver on pigments production by Fusarium culmorum (W. G. Sm.) Sacc. Polish Journal of Microbiology, 62, 365–372.
  • Kasprowicz, M. J., Kozioł, M., & Gorczyca, A. (2010). The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Canadian Journal of Microbiology, 56, 247–253. doi:10.1139/W10-012
  • Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70. doi:10.1016/j.cropro.2012.01.007
  • Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40, 53–58. doi:10.5941/MYCO.2012.40.1.053
  • Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 93, 95–99. doi:10.1016/j.saa.2012.03.002
  • Luangsa-Ard, J. J., Hywel-Jones, N. L., Manoch, L., & Samson, R. A. (2005). On the relationships of Paecilomyces sect. Isarioidea species. Mycological Research, 109, 581–589. doi:10.1017/S0953756205002741
  • McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179.
  • Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., … Lee, Y. S. (2009). Effects of colloidal silver nanoparticles on sclerotium – Forming phytopathogenic fungi. Plant Pathology Journal, 25, 376–380. doi:10.5423/PPJ.2009.25.4.376
  • Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., … Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372–386. doi:10.1007/s10646-008-0214-0
  • Nowack, B., Brouwer, C., Geertsma, R. E., Heugens, E. H., Ross, B. L., Toufektsian, M. C., … Aitken, R. J. (2013). Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology, 7, 1152–1156. doi:10.3109/17435390.2012.711863
  • Oćwieja, M., Gorczyca, A., Niemiec, M., Adamczyk, Z., & Pociecha, E. (2014). Effect of charge-stabilized silver nanoparticles with various surface properties on physiological state of seedlings of Triticum aestivum. FEBS Journal, 281(Suppl. 1), 622.
  • Park, H. J., Kim, S. H., Kim, H. J., & Choi, S. H. (2006). A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathology Journal, 22, 295–302. doi:10.5423/PPJ.2006.22.3.295
  • Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94, 287–293. doi:10.1007/s00253-012-3969-4
  • Reidy, B., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials, 6, 2295–2350. doi:10.3390/ma6062295
  • Sadeghi, B., Jamali, M., Kia, S., Amininia, A., & Ghafari, S. (2010). Synthesis and characterization of silver nanoparticles for antibacterial activity. International Journal of Nano Dimension, 1, 119–124.
  • Sekhon, B. S. (2014). Nanotechnology in agri-food production: An overview. Nanotechnology Science and Applications, 7, 31–53. doi:10.2147/NSA.S39406
  • Suresh, A. K., Pelletier, D., Wang, W., Morrell-Falvey, J. L., Gu, B., & Doktycz, M. J. (2012). Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir, 28, 2727–2735. doi:10.1021/la2042058
  • Thurman, R. B., Gerba, C. P., & Bitton, G. (1989). The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Critical Reviews in Environmental Control, 18, 295–315. doi:10.1080/10643388909388351
  • Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., & Suidan, M. (2010). An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. The Science of the Total Environment, 408, 999–1006. doi:10.1016/j.scitotenv.2009.11.003
  • Zimmermann, G. (1986). The Galleria bait method for detection of entomopathogenic fungi in soil. Journal of Applied Entomology, 102, 213–215. doi:10.1111/j.1439-0418.1986.tb00912.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.