758
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Lichen allelopathy: a new hope for limiting chemical herbicide and pesticide use

, &
Pages 773-796 | Received 09 Oct 2020, Accepted 06 Mar 2021, Published online: 25 Mar 2021

References

  • Abdel-Hameed, M., Bertrand, R. L., Piercey-Normore, M. D., & Sorensen, J. L. (2016). Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus. Fungal Biology, 120(3), 306–316. https://doi.org/10.1016/j.funbio.2015.10.009
  • Abdollahzadeh, G., Sharifzadeh, M. S., & Damalas, C. A. (2015). Perceptions of the beneficial and harmful effects of pesticides among Iranian rice farmers influence the adoption of biological control. Crop Protection, 75, 124–131. https://doi.org/10.1016/j.cropro.2015.05.018
  • Ahad, A. M., Goto, Y., Kiuchi, F., Tsuda, Y., Kondo, K., & Sato, T. (1991). Nematocidal principles in “oakmoss absolute” and nematocidal activity of 2, 4-dihydroxybenzoates. Chemical and Pharmaceutical Bulletin, 39(4), 1043–1046. https://doi.org/10.1248/cpb.39.1043
  • Akpinar, A., Ozturk, S., & Sinirtas, M. (2009). Effects of some terricolous lichens [Cladonia rangiformis Hoffm., Peltigera neckerii Hepp ex Müll. Arg., Peltigera rufescens (Weiss) Humb.] on soil bacteria in natural conditions. Plant, Soil and Environment, 55(4), 154–158. https://doi.org/10.17221/1616-PSE
  • Aliferis, K. A., & Jabaji, S. (2011). Metabolomics–A robust bioanalytical approach for the discovery of the modes-of-action of pesticides: A review. Pesticide Biochemistry and Physiology, 100(2), 105–117. https://doi.org/10.1016/j.pestbp.2011.03.004
  • Asplund, J., Bokhorst, S., Kardol, P., & Wardle, D. A. (2015). Removal of secondary compounds increases invertebrate abundance in lichens. Fungal Ecology, 18, 18–25. https://doi.org/10.1016/j.funeco.2015.07.009
  • Asplund, J., Solhaug, K. A., & Gauslaa, Y. (2010). Optimal defense: Snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology, 91(10), 3100–3105. https://doi.org/10.1890/09-1829.1
  • Balaji, P., Malarvannan, S., & Hariharan, G. (2007). Efficacy of Roccella montagnei extracts on Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Entomology, 4(3), 248–252. https://doi.org/10.3923/je.2007.248.252
  • Bayir, Y., Odabasoglu, F., Cakir, A., Aslan, A., Suleyman, H., Halici, M., & Kazaz, C. (2006). The inhibition of gastric mucosal lesion, oxidative stress and neutrophil-infiltration in rats by the lichen constituent diffractaic acid. Phytomedicine, 13(8), 584–590. https://doi.org/10.1016/j.phymed.2005.07.002
  • Brzozowski, L., & Mazourek, M. (2018). A sustainable agricultural future relies on the transition to organic agroecological pest management. Sustainability, 10(6), 2023. https://doi.org/10.3390/su10062023
  • Burkholder, P. R., Evans, A. W., McVeigh, I., & Thornton, H. K. (1944). Antibiotic activity of lichens. Proceedings of the National Academy of Sciences of the United States of America, 30(9), 250–255. https://doi.org/10.1073/pnas.30.9.250
  • Burzlaff, D. (1950). The effect of extracts from the lichen, Parmelia molliuseula, upon seed germination and upon growth rate of fungi. Journal of the Colorado-Wyoming Academy of Science, 4(2).
  • Bustinza, F. (1952). Antibacterial substances from lichens. Economic Botany, 6(4), 402–406. https://doi.org/10.1007/BF02984888
  • Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A., & Owen, J. G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730–1760. https://doi.org/10.1039/c7cs00431a
  • Cardile, V., Graziano, A. C. E., Avola, R., Piovano, M., & Russo, A. (2017). Potential anticancer activity of lichen secondary metabolite physodic acid. Chemico-Biological Interactions, 263, 36–45. https://doi.org/10.1016/j.cbi.2016.12.007
  • Cheon, D.-M., Jang, D. S., Kim, H. Y., Choi, K. S., & Choi, S. K. (2013). Detection of antifungal endolichenic fungi and antifungal compound. Korean Journal of Microbiology, 49(2), 165–171. https://doi.org/10.7845/kjm.2013.3023
  • Choi, G. J., Lee, S.-W., Jang, K. S., Kim, J.-S., Cho, K. Y., & Kim, J.-C. (2004). Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Protection, 23(12), 1215–1221. https://doi.org/10.1016/j.cropro.2004.05.005
  • Chooi, Y. H., Stalker, D. M., Davis, M. A., Fujii, I., Elix, J. A., Louwhoff, S. H., & Lawrie, A. C. (2008). Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycological Research, 112(Pt 2), 147–161. https://doi.org/10.1016/j.mycres.2007.08.022
  • Copping, L. G., & Duke, S. O. (2007). Natural products that have been used commercially as crop protection agents. Pest Management Science: Formerly Pesticide Science, 63(6), 524–554. https://doi.org/10.1002/ps.1378
  • Crittenden, P. D., & Porter, N. (1991). Lichen-forming fungi: Potential sources of novel metabolites. Trends in Biotechnology, 9(1), 409–414. https://doi.org/10.1016/0167-7799(91)90141-4
  • Culberson, C. F., & Elix, J. A. (1989). Lichen substances [Academic press]. Methods in Plant Biochemistry, 1, 509–535. https://doi.org/10.1016/B978-0-12-461011-8.50021-4
  • Dieu, A., Millot, M., Champavier, Y., Mambu, L., Chaleix, V., Sol, V., & Gloaguen, V. (2014). Uncommon chlorinated xanthone and other antibacterial compounds from the lichen Cladonia incrassata. Planta Medica, 80(11), 931–935. https://doi.org/10.1055/s-0034-1382827
  • Duke, S. O. (2003). Ecophysiological aspects of allelopathy. Planta, 217(4), 529–539. https://doi.org/10.1007/s00425-003-1054-z
  • Emsen, B., Yildirim, E., & Aslan, A. (2015). Insecticidal activities of extracts of three lichen species on Sitophilus granarius (L.) (Coleoptera: Curculionidae). Plant Protection Science, 51(3), 155–161. https://doi.org/10.17221/101/2014-PPS
  • Fournet, A., Ferreira, M.-E., de Arias, A. R., de Ortiz, S. T., Inchausti, A., Yalaff, G., Quilhot, W., Fernandez, E., & Hidalgo, M. E. (1997). Activity of compounds isolated from Chilean lichens against experimental cutaneous leishmaniasis. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 116(1), 51–54. https://doi.org/10.1016/s0742-8413(96)00127-2
  • Frahm, J.-P., Specht, A., Reifenrath, K., & Vargas, Y. L. (2000). Allelopathic effect of crustaceous lichens on epiphytic bryophytes and vascular plants. Nova Hedwigia, 70(1/2), 245–254. https://doi.org/10.1127/nova.hedwigia/70/2000/245
  • Fujii, I. (2009). Heterologous expression systems for polyketide synthases. Natural Product Reports, 26(2), 155–169. https://doi.org/10.1039/b817092b
  • Gardner, C. R., & Mueller, D. M. (1981). Factors affecting the toxicity of several lichen acids: Effect of pH and lichen acid concentration. American Journal of Botany, 68(1), 87–95. https://doi.org/10.1002/j.1537-2197.1981.tb06359.x
  • Gauslaa, Y. (2005). Lichen palatability depends on investments in herbivore defence. Oecologia, 143(1), 94–105. https://doi.org/10.1007/s00442-004-1768-z
  • Giez, I., Lange, O. L., & Proksch, P. (1994). Growth retarding activity of lichen substances against the polyphagous herbivorous insect Spodoptera littoralis. Biochemical Systematics and Ecology, 22(2), 113–120. https://doi.org/10.1016/0305-1978(94)90001-9
  • Goel, M., Dureja, P., Rani, A., & Uniyal, P. L. (2016). Potential of lichens as biocontrol agents in agriculture. In A. Biswas, P. K. Bharti, & A. Chauhan (Eds.), Pest management and agro-techniques. Environment Book series (pp. 193–213). Discovery Publishing House.
  • Goel, M., Kalra, R., Ponnan, P., Jayaweera, J., & Kumbukgolla, W. (2020). Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of oxacillin and a bioactive compound from Ramalina roesleri. Microbial Pathogenesis, 104676, https://doi.org/10.1016/j.micpath.2020.104676
  • Goel, M., Rani, A., Dureja, P., & Uniyal, P. (2014). Investigation of allelopathic potentiality of the himalyan lichen Parmelia reticulata tayl. Against phalaris minor retz. APCBEE Procedia, 9, 140–144. https://doi.org/10.1016/j.apcbee.2014.01.025
  • Goel, M., Sharma, P. K., Dureja, P., Rani, A., & Uniyal, P. L. (2011). Antifungal activity of extracts of the lichens Parmelia reticulata, Ramalina roesleri, Usnea longissima and stereocaulon himalayense. Archives Of Phytopathology And Plant Protection, 44(13), 1300–1311. https://doi.org/10.1080/03235408.2010.496549
  • Goga, M., Antreich, S. J., Backor, M., Weckwerth, W., & Lang, I. (2017). Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy. Protoplasma, 254(3), 1307–1315. https://doi.org/10.1007/s00709-016-1022-7
  • Goga, M., Pöykkö, H., Adlassnig, W., & Bačkor, M. (2016). Response of the lichen-eating moth Cleorodes lichenaria larvae to varying amounts of usnic acid in the lichens. Arthropod-Plant Interactions, 10(1), 71–77. https://doi.org/10.1007/s11829-015-9409-5
  • Goga, M., Ručová, D., Kolarčik, V., Sabovljević, M., Bačkor, M., & Lang, I. (2018). Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecology and Evolution, 8(5), 2781–2787. https://doi.org/10.1002/ece3.3908
  • Gollapudi, S. R., Telikepalli, H., Jampani, H. B., Mirhom, Y. W., Drake, S. D., Bhattiprolu, K. R., Velde, D. V., & Mitscher, L. A. (1994). Alectosarmentin, a new antimicrobial dibenzofuranoid lactol from the lichen, Alectoria sarmentosa. Journal of Natural Products, 57(7), 934–938. https://doi.org/10.1021/np50109a009
  • Gomes, A. T., Honda, N. K., Roese, F. M., Muzzi, R. M., & Marques, M. R. (2002). Bioactive derivatives obtained from lecanoric acid, a constituent of the lichen Parmotrema tinctorum (Nyl.) Hale (parmeliaceae). Revista Brasileira de Farmacognosia, 12, 74–75. https://doi.org/10.1590/S0102-695X2002000300036
  • González, A. G., Barrera, J. B., Pérez, E. M. R., & Padrón, C. E. H. (1992). Chemical constituents of the lichen Ramalina hierrensis. Planta Medica, 58(02), 214–218. https://doi.org/10.1055/s-2006-961433
  • Goward, T. (1994). Living antiquities. Nature Canada, 14–21.
  • Granéli, E., & Salomon, P. S. (2010). Factors influencing allelopathy and toxicity in prymnesium parvum 1. JAWRA Journal of the American Water Resources Association, 46(1), 108–120. https://doi.org/10.1111/j.1752-1688.2009.00395.x
  • Green, T., Nash, T., & Lange, O. (2008). Physiological ecology of carbon dioxide exchange. Lichen Biology, 152–181. https://doi.org/10.1017/CBO9780511790478.010
  • Halama, P., & Van Haluwin, C. (2004). Antifungal activity of lichen extracts and lichenic acids. BioControl, 49(1), 95–107. https://doi.org/10.1023/B:BICO.0000009378.31023.ba
  • Hanuš, L. O., Temina, M., & Dembitsky, V. M. (2008). Antibacterial and antifungal activities of some phenolic metabolites isolated from the lichenized ascomycete Ramalina lacera. Natural Product Communications, 3(2), https://doi.org/10.1177/1934578X0800300226
  • Helms, G., Friedl, T., Rambold, G., & Mayrhofer, H. (2007). Identification of photobionts from the lichen family physciaceae using algal-specific ITS rDNA sequencing. The Lichenologist, 33(01), 73–86. https://doi.org/10.1006/lich.2000.0298
  • Hyvärinen, M., Koopmann, R., Hormi, O., & Tuomi, J. (2000). Phenols in reproductive and somatic structures of lichens: A case of optimal defence? Oikos, 91(2), 371–375. https://doi.org/10.1034/j.1600-0706.2000.910217.x
  • Ingolfsdottir, K., Hjalmarsdottir, M. A., Sigurdsson, A., Gudjonsdottir, G. A., Brynjolfsdottir, A., & Steingrimsson, O. (1997). In vitro susceptibility of Helicobacter pylori to protolichesterinic acid from the lichen Cetraria islandica. Antimicrobial Agents and Chemotherapy, 41(1), 215–217. https://doi.org/10.1128/AAC.41.1.215
  • Jallow, M. F., Awadh, D. G., Albaho, M. S., Devi, V. Y., & Thomas, B. M. (2017). Pesticide knowledge and safety practices among farm workers in Kuwait: Results of a survey. International Journal of Environmental Research and Public Health, 14(4), 340. https://doi.org/10.3390/ijerph14040340
  • Jones, R. S. (2010). Biochemical pesticides: Green chemistry designs by nature. Handbook of Green Chemistry: Online, 329–347. https://doi.org/10.1002/9783527628698.hgc106
  • Kaneda, M., Takahashi, R., Iitaka, Y., & Shibata, S. (1972). Retigeranic acid, a novel sesterterpene isolated from the lichens of Lobaria retigera group. Tetrahedron Letters, 13(45), 4609–4611. https://doi.org/10.1016/S0040-4039(01)94378-3
  • Keller, N. P., & Hohn, T. M. (1997). Metabolic pathway gene clusters in filamentous fungi. Fungal Genetics and Biology, 21(1), 17–29. https://doi.org/10.1006/fgbi.1997.0970
  • Kellogg, J. J., & Raja, H. A. (2017). Endolichenic fungi: A new source of rich bioactive secondary metabolites on the horizon. Phytochemistry Reviews, 16(2), 271–293. https://doi.org/10.1007/s11101-016-9473-1
  • Koch, E. (1999). Evaluation of commercial products for microbial control of soil-borne plant diseases. Crop Protection, 18(2), 119–125. https://doi.org/10.1016/S0261-2194(98)00102-1
  • Kosanić, M., & Ranković, B. (2019). Lichen secondary metabolites as potential antibiotic agents (Lichen secondary metabolites). (pp. 99–127). Springer. https://doi.org/10.1007/978-3-030-16814-8.
  • Lacey, L. A., Liu, T. X., Buchman, J. L., Munyaneza, J. E., Goolsby, J. A., & Horton, D. R. (2011). Entomopathogenic fungi (hypocreales) for control of potato psyllid, bactericera cockerelli (Šulc)(Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biological Control, 56(3), 271–278. https://doi.org/10.1016/j.biocontrol.2010.11.012
  • Latif, S., Chiapusio, G., & Weston, L. (2017). Allelopathy and the role of allelochemicals in plant defence. In G. Becard (Ed.), Advances in botanical research: How plants communicate with their biotic environment 1st ed., Vol. 82 (pp. 19–54). Academic Press. Elsevier. https://doi.org/10.1016/bs.abr.2016.12.001.
  • Lauterwein, M., Oethinger, M., Belsner, K., Peters, T., & Marre, R. (1995). In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms. Antimicrobial Agents and Chemotherapy, 39(11), 2541–2543. https://doi.org/10.1128/aac.39.11.2541
  • Lawrey, J. D. (1980). Correlations between lichen secondary chemistry and grazing activity by Pallifera varia. Bryologist, 328–334. https://doi.org/10.2307/3242442
  • Le, D. H., Takenaka, Y., Hamada, N., & Tanahashi, T. (2013). Eremophilane-type sesquiterpenes from cultured lichen mycobionts of Sarcographa tricosa. Phytochemistry, 91, 242–248. https://doi.org/10.1016/j.phytochem.2012.01.009
  • Lokajová, V., Bačkorová, M., & Bačkor, M. (2014). Allelopathic effects of lichen secondary metabolites and their naturally occurring mixtures on cultures of aposymbiotically grown lichen photobiont Trebouxia erici (Chlorophyta). South African Journal of Botany, 93, 86–91. https://doi.org/10.1016/j.sajb.2014.03.015
  • Luo, H., Wei, X., Yamamoto, Y., Liu, Y., Wang, L., Jung, J. S., Koh, Y. J., & Hur, J.-S. (2010). Antioxidant activities of edible lichen Ramalina conduplicans and its free radical-scavenging constituents. Mycoscience, 51(5), 391–395. https://doi.org/10.1007/s10267-010-0048-5
  • Maciąg-Dorszyńska, M., Węgrzyn, G., & Guzow-Krzemińska, B. (2014). Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiology Letters, 353(1), 57–62. https://doi.org/10.1111/1574-6968.12409
  • Malicki, J. (1965). The effect of lichen acids on the soil microorganisms. Part I. The washing down of the acids into the soil. Ann Univ Mariae Curie-Sklodowska Lublin, 10, 239–248.
  • Marijana, K., Branislav, R., & Slobodan, S. (2010). Antimicrobial activity of the lichen Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. African Journal of Microbiology Research, 4(9), 885–890. https://doi.org/10.5897/AJMR.9000077
  • McMorris, T. (1970). Chemical and botanical guide to lichen products. JSTOR.
  • Mitrović, T., Stamenković, S., Cvetković, V., Tošić, S., Stanković, M., Radojević, I., Stefanović, O., Čomić, L., Đačić, D., & Ćurčić, M. (2011). Antioxidant, antimicrobial and antiproliferative activities of five lichen species. International Journal of Molecular Sciences, 12(8), 5428–5448. https://doi.org/10.3390/ijms12085428
  • Moreno-Risueno, M. A., Busch, W., & Benfey, P. N. (2010). Omics meet networks—using systems approaches to infer regulatory networks in plants. Current Opinion in Plant Biology, 13(2), 126–131. https://doi.org/10.1016/j.pbi.2009.11.005
  • Moriyasu, Y., Miyagawa, H., Hamada, N., Miyawaki, H., & Ueno, T. (2001). 5-Deoxy-7-methylbostrycoidin from cultured mycobionts from Haematomma sp. Phytochemistry, 58(2), 239–241. https://doi.org/10.1016/S0031-9422(01)00167-4
  • Nguyen, K.-H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30(12), 1490–1508. https://doi.org/10.1039/c3np70064j
  • Nuñez, M. R., Bravo, F., & Calvo, L. (2003). Predicting the probability of seed germination in Pinus sylvestris L. and four competitor shrub species after fire. Annals of Forest Science, 60(1), 75–81. https://doi.org/10.1051/forest:2002076
  • Oerke, E. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31–43. https://doi.org/10.1017/S0021859605005708
  • Park, S.-N., Lim, Y. K., Choi, M.-H., Cho, E., Bang, I. S., Kim, J. M., Ahn, S.-J., & Kook, J.-K. (2018). Antimicrobial mechanism of oleanolic and ursolic acids on Streptococcus mutans UA159. Current Microbiology, 75(1), 11–19. https://doi.org/10.1007/s00284-017-1344-5
  • Pathak, A., Mishra, R. K., Shukla, S. K., Kumar, R., Pandey, M., Pandey, M., Qidwai, A., & Dikshit, A. (2016). In vitro evaluation of antidermatophytic activity of five lichens. Cogent Biology, 2(1), 1197472. https://doi.org/10.1080/23312025.2016.1197472
  • Peres, M. T. L. P., Mapeli, A. M., Faccenda, O., Gomes, A. T., & Honda, N. K. (2009). Allelopathic potential of orsellinic acid derivatives. Brazilian Archives of Biology and Technology, 52(4), 1019–1026. https://doi.org/10.1590/S1516-89132009000400027
  • Pizňak, M., Kolarčik, V., Goga, M., & Bačkor, M. (2019). Allelopathic effects of lichen metabolite usnic acid on growth and physiological responses of Norway spruce and Scots pine seedlings. South African Journal of Botany, 124, 14–19. https://doi.org/10.1016/j.sajb.2019.04.011
  • Pöykkö, H., Hyvärinen, M., & Bačkor, M. (2005). Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology, 86(10), 2623–2632. https://doi.org/10.1890/04-1632
  • Raju, K., Appa Rao, A., & Rao, P. (1985). Leprapinic acid derivatives with antibacterial activity. Fitoterapia.
  • Raju, K., & Rao, P. (1986). Chemistry of lichen products. 6. Synthesis of some new benzimidazole derivatives from pulvinic acid lactone and their fungicidal activity (vol. 25, pp. 97-99). Council scientific industrial research publ & info directorate, New Delhi … .
  • Ranković, B., & Kosanić, M. (2019). Lichens as a potential source of bioactive secondary metabolites (Lichen secondary metabolites). (pp. 1–29). Springer. https://doi.org/10.1007/978-3-319-13374-4.
  • Ranković, B., Kosanić, M., Manojlović, N., Rančić, A., & Stanojković, T. (2014). Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Medicinal Chemistry Research, 23(1), 408–416. https://doi.org/10.1007/s00044-013-0644-y
  • Ranković, B., Ranković, D., Kosanić, M., & Marić, D. (2010). Antioxidant and antimicrobial properties of the lichens Anaptychya ciliaris, Nephroma parile, Ochrolechia tartarea and Parmelia centrifuga. Central European Journal of Biology, 5(5), 649–655. https://doi.org/10.2478/s11535-010-0043-z
  • Reutimann, P., & Scheidegger, C. (1987). Importance of lichen secondary products in food choice of two oribatid mites (Acari) in an alpine meadow ecosystem. Journal of Chemical Ecology, 13(2), 363–369. https://doi.org/10.1007/BF01025896
  • Rogers, R. (2012). The fungal pharmacy: The complete guide to medicinal mushrooms and lichens of North America. North Atlantic Books.
  • Romagni, J. G., & Dayan, F. E. (2002). Structural diversity of lichen metabolites and their potential use (Advances in microbial toxin research and its biotechnological exploitation). (pp. 151–169). Springer. https://doi.org/10.1007/978-1-4757-4439-2_11.
  • Rundel, P. W. (1978). The ecological role of secondary lichen substances. Biochemical Systematics and Ecology, 6(3), 157–170. https://doi.org/10.1016/0305-1978(78)90002-9
  • Sachin, M., Mahalakshmi, S., & Kekuda, P. (2018). Insecticidal efficacy of lichens and their metabolites-A mini review. Journal of Applied Pharmaceutical Science, 8(10), 159–164. https://doi.org/10.7324/JAPS.2018.81020
  • Sallam, M. N. (2013). Insect damage: damage on post-harvest. Food and Agriculture Organization of the United Nations. Available online at: http://www. fao. org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compe ndium_-_Pests-Insects. pdf
  • Schinkovitz, A., Guillemette, T., Blond, N., Le Pogam-Alluard, P., Jaozara, N., Kerdia, K., Boustie, J., Simoneau, P., & Richomme, P. (2016). Antifungal activity of lichen extracts and compounds against Alternaria brassicola. Planta Medica, 82(S 01), P161. https://doi.org/10.1055/s-0036-1596321
  • Selm, Y., & Litinas, K. (2015). Cytotoxic and antimicrobial activities of two new triterpenoids from the peels of local Egyptian Malus domestica L. Journal of the Chilean Chemical Society, 60(2), 2896–2899. https://doi.org/10.4067/S0717-97072015000200007
  • Senthil-Nathan, S. (2015). A review of biopesticides and their mode of action against insect pests (Environmental sustainability. (pp. 49-63). Springer. https://doi.org/10.1007/978-81-322-2056-5_3.
  • Shukla, V., Joshi, G. P., & Rawat, M. (2010). Lichens as a potential natural source of bioactive compounds: A review. Phytochemistry Reviews, 9(2), 303–314. https://doi.org/10.1007/s11101-010-9189-6
  • Sichaem, J., Nguyen, H.-H., & Duong, T.-H. (2019). Hopane-6, 16 α, 22-triol: A new Hopane triterpenoid from the lichen Parmotrema sancti-angelii. Natural Product Communications, 14(6), https://doi.org/10.1177/1934578X19858208
  • Slansky, F. (1979). Effect of the lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armyworm, Spodoptera ornithogalli. Environmental Entomology, 8(5), 865–868. https://doi.org/10.1093/ee/8.5.865
  • Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., & Thor, G. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488–492. https://doi.org/10.1126/science.aaf8287
  • Stocker-Worgotter, E. (2008). Metabolic diversity of lichen-forming ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS genes. Natural Product Reports, 25(1), 188–200. https://doi.org/10.1039/b606983p
  • Stocker-Wörgötter, E., Cordeiro, L. M. C., & Iacomini, M. (2013). Accumulation of potential pharmaceutically relevant lichen metabolites in lichens and cultured lichen symbionts. Studies in Natural Products Chemistry, 39, 337–380. https://doi.org/10.1016/b978-0-444-62615-8.00010-2
  • Stocker-Wörgötter, E., Elix, J. A., & Grube, M. (2004). Secondary chemistry of lichen-forming fungi: Chemosyndromic variation and DNA-analyses of cultures and chemotypes in the Ramalina farinacea complex. Bryologist, 107(2),152–162. https://doi.org/10.1639/0007-2745(2004)107[0152:SCOLFC]2.0.CO;2
  • Swathi, D., Suchitha, Y., Kekuda, P., Venugopal, T., Vinayaka, K., Mallikarjun, N., & Raghavendra, H. (2010). Antimicrobial, anthelmintic and insecticidal activity of a macrolichen Everniastrum cirrhatum (Fr.) hale. International Journal of Drug Development and Research, 2(4), 780–789.
  • Takahagi, T., Ikezawa, N., Endo, T., Ifuku, K., Yamamoto, Y., Kinoshita, Y., Takeshita, S., & Sato, F. (2006). Inhibition of PSII in atrazine-tolerant tobacco cells by barbatic acid, a lichen-derived depside. Bioscience, Biotechnology, and Biochemistry, 70(1), 266–268. https://doi.org/10.1271/bbb.70.266
  • Tay, T., Türk, A. Ö., Yılmaz, M., Türk, H., & Kıvanç, M. (2004). Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Zeitschrift für Naturforschung C, 59(5-6), 384-388. https://doi.org/10.1515/znc-2004-5-617.
  • Thadhani, V. M., Choudhary, M. I., Khan, S., & Karunaratne, V. (2012). Antimicrobial and toxicological activities of some depsides and depsidones. Journal of the National Science Foundation of Sri Lanka, 40(1), 43–48. https://doi.org/10.4038/jnsfsr.v40i1.4167
  • Tigre, R., Silva, N., Santos, M., Honda, N., Falcao, E., & Pereira, E. (2012). Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicology and Environmental Safety, 84, 125–132. https://doi.org/10.1016/j.ecoenv.2012.06.026
  • Timbreza, L. P., De los Reyes, J., Flores, C., Perez, R., Stockel, M., & Santiago, K. (2017). Antibacterial activities of the lichen Ramalina and Usnea collected from Mt. Banoi, Batangas and Dahilayan, Bukidnon, against multi-drug resistant (MDR) bacteria. Australian Journal of Mycology, 26, 27–42.
  • Tresch, S. (2013). Strategies and future trends to identify the mode of action of phytotoxic compounds. Plant Science, 212, 60–71. https://doi.org/10.1016/j.plantsci.2013.08.005
  • Türk, H., Yılmaz, M., Tay, T., Türk, AÖ, & Kıvanç, M. (2006). Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Zeitschrift für Naturforschung C, 61(7-8), 499–507. https://doi.org/10.1515/znc-2006-7-806
  • Urano, K., Kurihara, Y., Seki, M., & Shinozaki, K. (2010). ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13(2), 132–138. https://doi.org/10.1016/j.pbi.2009.12.006
  • Varol, M. (2019). Lichens as a promising source of unique and functional small molecules for human health and well-being (studies in Natural Products Chemistry (Vol. 60)). pp. 425-458. Elsevier.
  • Wang, Y., Geng, C., Yuan, X., Hua, M., Tian, F., & Li, C. (2018). Identification of a putative polyketide synthase gene involved in usnic acid biosynthesis in the lichen Nephromopsis pallescens. PLoS One, 13(7), e0199110. https://doi.org/10.1371/journal.pone.0199110
  • Warrior, P., Rehberger, L. A., Beach, M., Grau, P. A., Kirfman, G. W., & Conley, J. M. (1999). Commercial development and introduction of DiTeraTM, a new nematicide. Pesticide Science, 55(3), 376–379. https://doi.org/10.1002/(SICI)1096-9063(199903)55
  • Weir, T. L., Park, S.-W., & Vivanco, J. M. (2004). Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 7(4), 472–479. https://doi.org/10.1016/j.pbi.2004.05.007
  • Wilkins, A. L. (1977). Durvilldiol and durvillonol: Structure and occurrence. Phytochemistry, 16(12), 2031–2032. https://doi.org/10.1016/0031-9422(77)80124-6
  • Yee, W. L., & Toscano, N. C. (1998). Laboratory evaluations of synthetic and natural insecticides on beet armyworm (Lepidoptera: Noctuidae) damage and survival on lettuce. Journal of Economic Entomology, 91(1), 56–63. https://doi.org/10.1093/jee/91.1.56
  • Yildirim, E., Aslan, A., Emsen, B., Cakir, A., & Ercisli, S. (2012). Insecticidal effect of Usnea longissima (Parmeliaceae) extract against Sitophilus granarius (Coleoptera: Curculionidae). International Journal of Agriculture and Biology, 14(2) 303–306.
  • Yosioka, I., Matsuda, A., & Kitagawa, I. (1966). Pyxinic acid, a novel lichen triterpene with 3β-hydroxyl function. Tetrahedron Letters, 7(6), 613–616. https://doi.org/10.1016/S0040-4039(01)99674-1
  • Zambare, V. P., & Christopher, L. P. (2012). Biopharmaceutical potential of lichens. Pharmaceutical Biology, 50(6), 778–798. https://doi.org/10.3109/13880209.2011.633089
  • Zolovs, M., Jakubāne, I., Kirilova, J., Kivleniece, I., Moisejevs, R., Koļesnikova, J., & Pilāte, D. (2020). The potential antifeedant activity of lichen-forming fungal extracts against the invasive Spanish slug (Arion vulgaris). Canadian Journal of Zoology, 98(3), 195–201. https://doi.org/10.1139/cjz-2019-0106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.