Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 13, 2018 - Issue 2
395
Views
0
CrossRef citations to date
0
Altmetric
HIDA 7: Life/Defect Assessment and Failures in High Temperature Power Plant

Predicted life of P91 steel for cyclic high temperature service

, , &
Pages 301-310 | Received 01 Jun 2017, Accepted 20 Sep 2017, Published online: 16 Oct 2017

References

  • Design and construction rules for mechanical components of FBR nuclear islands and high temperatrure applications: RCC-MRx Desing Code. AFCEN; 2012.
  • Assessment procedure for the high temperature response of structures. The R5 Procedure; 2003.
  • ASME boiler and pressure vessel code, section III Div. 1 Sub-Section NH: ASME; 2007.
  • Pohja R, Holmstrom S, Nilsson KF. “Creep-fatigue interaction rules for P91,” MATTER – deliverable D4.5, EURATOM FP7 grant agreement no. 269706; 2014.
  • Holmstrom S, Pohja R, Payten W. Creep-fatigue interaction models for grade 91 steel. ASTM, Materials Performance and Characterization. 2014;3:156–181.
  • Pohja R, Holmström S, Lee H.-Y. Recommendation for Creep and Creep-fatigue assessment for P91. MATTER – deliverable D4.6, EURATOM FP7 grant agreement no. 269706; 2014.
  • Fournier B, Sauzay M, Caës C. Creep–fatigue–oxidation interactions in a 9Cr–1Mo martensitic steel. Part I: effect of tensile holding period on fatigue lifetime. Int J Fatigue. 2008;30:649–662.10.1016/j.ijfatigue.2007.05.007
  • Asayama T, Tachibana Y. Collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for grade 91 and hastelloy XR, DOE/ASME generation IV materials project, a report on task 5 submitted to ASME ST-LLC - revision 3 final report. JAPC; 2007.
  • Manson SS. A simple procedure for estimating high-temperature low cycle fatigue. Exp Mech. 1968;8:349–355.10.1007/BF02326037
  • Technical report, final report on Round-Robin conducted in support of standard test method for creep-fatigue testing, nr. 3002001719. EPRI; 2013.
  • Fournier B, Dalle F, Sauzay M. et al. Comparison of various 9-12Cr steels under fatigue and creep-fatigue loadings at high temperature. Mater Sci Eng A. 2011;528:6034–6045.
  • Asayama T. Update and improve subsection NH alternative simplified creep-fatigue design methods. ASME; 2009.
  • Holmström S, Auerkari P. A robust model for creep-fatigue life assessment. Mater Sci Eng A. 2013;559:333–335.10.1016/j.msea.2012.08.107
  • Pohja R, Holmström S. A comparison of creep-fatigue assessment and modelling methods. In: 22nd International Conference on Nuclear Engineering, ICONE 22; 2014.
  • Pohja R, Holmström S, Nurmela A, et al. A study of creep-fatigue interaction in the nickel-base superalloy 263. In: 10th Liege Conference on Materials for Advanced Power Engineering; 2014.
  • Holmström S, Pohja R, Nurmela A. Creep and creep-fatigue behaviour of 316 stainless steel. Procedia Eng. 2013;55:160–164.10.1016/j.proeng.2013.03.236
  • Wilshire B, Scharning PJ, Hurst R. A new approach to creep data assessment. Mater Sci Eng A. 2009;510–511:3–6.10.1016/j.msea.2008.04.125
  • Wilshire B, Scharming PJ. Long-term creep life prediction for a high chromium steel. Scripta Materialia. 2007;56:701–704.10.1016/j.scriptamat.2006.12.033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.