Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 13, 2018 - Issue 1
164
Views
0
CrossRef citations to date
0
Altmetric
Microscopy of Oxidataion

Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases relevant to oxyfuel power plants

, , , &
Pages 275-290 | Received 06 Sep 2017, Accepted 09 Oct 2017, Published online: 26 Oct 2017

References

  • Pikkarainen T, Tourunen A, Hämäläinen J. Oxyfuel concept development. Energy Mater. 2007;2:78–83.10.1179/174892407X266644
  • Buhre BJP, Elliott LK, Sheng CD, et al. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31:283–307.10.1016/j.pecs.2005.07.001
  • Jordal K, Anheden M, Yan J, et al. Oxyfuel Combustion for coal-fired power generation with CO2 capture – opportunities and challenges. Proceedings of 7th International Conference on Greenhouse Gas Control Technologies (GHGT‐7); 2004 Sept 5–9; Vancouver.
  • Bordenet B, Kluger F. Thermodynamic modelling of the corrosive deposits in oxy-fuel fired boilers. Mater Sci Forum. 2008;595-598:261–269.10.4028/www.scientific.net/MSF.595-598
  • Scheffknecht G, Al-Makhadmeh L, Schnell U, et al. Oxy-fuel coal combustion—A review of the current state-of-the-art. Int J Greenh Gas Con. 2011;5:S16–S35.10.1016/j.ijggc.2011.05.020
  • Chen L, Yong SZ, Ghoniem AF. Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci. 2012;38:156–214.10.1016/j.pecs.2011.09.003
  • Stanger R, Wall T, Spörl R, et al. Oxyfuel combustion for CO2 capture in power plants. Int J Greenh Gas Con. 2015;40:55–125.10.1016/j.ijggc.2015.06.010
  • Olszewski T. Oxidation mechanisms of materials for heat exchanging components in CO2/H2O-containing gases relevant to oxy-fuel environments [PhD thesis]. Jülich: Forschungszentrum Jülich; 2012.
  • Quadakkers WJ, Huczkowski P, Gerhardt A, et al. High temperature corrosion issues in oxyfuel plants. Proceedings of 10th Liege Conference: Materials for Advanced Power Engineering; 2014; Liege. p. 820.
  • Żurek J, Wessel E, Niewolak L, et al. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650°C. Corros Sci. 2004;46:2301–2317.10.1016/j.corsci.2004.01.010
  • Mu N, Jung KY, Yanar NM, et al. Water vapor effects on the oxidation behavior of Fe–Cr and Ni–Cr alloys in atmospheres relevant to oxy-fuel combustion. Oxid Met. 2012;78:221–237.10.1007/s11085-012-9302-x
  • Quadakkers WJ, Olszewski T, Piron-Abellan J, et al. Oxidation of metallic materials in simulated CO2/H2O-rich service environments relevant to an oxyfuel plant. VDI-Berichte 2102. 2010;81–103.
  • Ehlers RJ, Ennis PJ, Singheiser L, et al. Life Time Modelling of High Temperature Corrosion Processes. European Federation of Corrosion Monograph, Nr. 34, London; 2001.
  • Husemann RU. erkstoffe und ihre Gebrauchseigenschaften für Überhitzer- und Zwischenüberhitzerrohre in Kraftwerken mit erhöhten Dampfparametern. VGB Kraftwerkstechnik. 1999;10:146–149.
  • Hansson AN, Montgomery M. Steam oxidation of TP347HFG in power plants. Mater Sci Forum. 2006;522-523:181–188.10.4028/www.scientific.net/MSF.522-523
  • Zurek J, De Bruycker E, Huysmans S, et al. Steam oxidation of 9% to 12%Cr steels: critical evaluation and implications for practical application. Corrosion. 2014;70:112–129.10.5006/1065
  • Thiele M, Teichmann H, Schwarz W, et al. Korrosionsverhalten von ferritischen und austenitischen Stahlen in simulierten Rauchgasen von stein- und braunkohlebefeuerten Kraftwerken. VGB Kraftwerkstechnik. 1997;77 (2):135–140.
  • Tang LF, Asteman H, Svensson JE, et al. TEM investigation of oxide scales formed on 304L steel at 600°C in oxygen with 40% water vapour. Oxid Met. 2009;77–105.
  • Pint BA, Thomson JK. Effect of oxy firing on corrosion rates at 600–650°C. Mater Corros. 2014;65:132–140.10.1002/maco.v65.2
  • BA Pint. Effect of oxy-firing on corrosion rates at 600°C. NACE Corrosion 2012, Paper No. 1635, Salt Lake City, UT; 2012.
  • Pirón Abellán J, Olszewski T, Penkalla HJ, et al. Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments. Mater High Temp. 2009;26:63–72.10.3184/096034009X438185
  • Abellán J, Olszewski T, Meier GH. The oxidation behaviour of the 9% Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments. Int J Mater Res. 2010;101:287–299.10.3139/146.110271
  • Quadakkers WJ, Olszewski T, Piron-Abellan J, et al. Oxidation of metallic materials in simulated CO2/H2O-rich service environments relevant to an oxyfuel plant. Mater Sci Forum. 2011;696:194–199.10.4028/www.scientific.net/MSF.696
  • Ennis PJ, Quadakkers WJ. Implications of steam oxidation for service life of the high-strength martensitic steel components in high-temperature plant. Int J Press Ves Pip. 2007;84(1-2):75–81.10.1016/j.ijpvp.2006.09.007
  • Quadakkers WJ, Zurek J. Oxidation in steam and steam/hydrogen environments. In Shreir’s corrosion. Oxford: Elsevier; 2010. p. 407–456.
  • Kull R, Stein-Brzozowska M, Scheffknecht G, et al. Corrosion of superheater materials under oxyfuel conditions. Oral presentation at the First International Oxyfuel Combustion Conference, Cottbus; 2009.
  • Hjörnhede A, Montgomery M, Bjurman M, et al. Preliminary experiences with materials testing at the oxyfuel pilot plant at Schwarzepumpe. In: Materials for Advanced Power Engineering. Jülich; 2010. p. 1244.
  • Huczkowski P, Chyrkin A, Singheiser L, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases, relevant to oxyfuel combustion. NACE Corrosion 2016, Paper No. 7391, Vancouver; 2016.
  • Huczkowski P, Olszewski T, Schiek M, et al. Effect of SO2 on oxidation of metallic materials in CO2/H2O‐rich gases relevant to oxyfuel environments. Mater Corros. 2014;65:121–131.10.1002/maco.v65.2
  • Holcomb GR, Tylczak J, Meier GH, et al. Fireside corrosion in oxy-fuel combustion of coal. Oxid Met. 2013;80:599–610.10.1007/s11085-013-9399-6
  • Stein-Brzozowska M, Maier J, Scheffknecht G, et al. Fireside corrosion of applied and modern superheater-alloys under oxy-fuel conditions. Energy Procedia. 2013;37:1448–1461.10.1016/j.egypro.2013.06.020
  • Abang R, Lisk A, Krautz HJ. Fireside corrosion of superheater materials under oxy-coal firing conditions. Energy Procedia. 2013;40:304–311.10.1016/j.egypro.2013.08.035
  • Bolland O, Kvamsdal HM, Boden JC. A comparison of the efficiencies of the oxy-fuel power cycles water-cycle, graz-cycle and matiant-cycle, Carbon Dioxide Capture for Storage in Deep Geologic Formations, Vol. 1, Chap. 29. Amsterdam: Elsevier, 2008. p. 499.
  • Wu X, Gleeson B. Compositional factors affecting the high-temperature degradation behavior of alloys exposed to relatively high pS2 – low pO2 atmospheres. CORROSION 2013, paper No. 2850, Houston, TX; 2013. p. 207.
  • Young DJ. High temperature oxidation and corrosion of metals. Amsterdam: Elsevier; 2008.
  • Zurek J, Hejrani E, Müller M, et al. Korrosionsverhalten metallischer Werkstoffe für innovative Vergasungsverfahren. Chemie Ingenieur Technik. 2014;86:1726–1734.10.1002/cite.v86.10
  • Pfeifer JP, Holzbrecher H, Quadakkers WJ, et al. Fresenius J Anal Chem. 1993;346:186–191.10.1007/BF00321410
  • Huczkowski P, Young DJ, Olszewski T, et al., Effect of sulphur on the oxidation behaviour of possible construction materials for heat exchanging components in oxyfuel plants in the temperature range 550–700 °C. DOI: 10.1007/s11085-017-9809-2.
  • Bale CW, Pelton AD, Thompson WJ, et al. FactSage 6.2 (database: FACT), Copyright Thermfact and GTT-Technologies, 1976–2010.
  • Wagner C. Reaktionstypen bei der Oxydation von Legierungen. Z. Elektrochem. 1959;63:772.
  • C Wagner. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J Electrochem Soc 1952;99:369–380.10.1149/1.2779605
  • Leistikow SI, Wolf I, Grabke HJ. Effects of cold work on the oxidation behavior and carburization resistance of Alloy 800. Werkstoffe und Korrosion. 1987;38:556–562.10.1002/(ISSN)1521-4176
  • Young DJ, Pint BA. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor. Oxid Met. 2006;66:137–153.10.1007/s11085-006-9030-1
  • Asteman H, Svensson J-E, Norell M, et al. Influence of water vapor and flowrate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation. Oxid Met. 2000;54:11–26.10.1023/A:1004642310974
  • Huczkowski P, Lehnert W, Angermann H-H, et al. Effect of gas flow rate on oxidation behaviour of alloy 625 in wet air in the temperature range 900–1000 °C. Mater Corros 2017;68(2):159–170.10.1002/maco.v68.2
  • Lobnig RE, Grabke HJ. Mechanisms of simultaneous sulfidation and oxidation of Fe-Cr and Fe-Cr-Ni-alloys and of the failure of protective chromia scales. Corros Sci. 1990;30(10):1045–1071.10.1016/0010-938X(90)90211-M

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.