94
Views
0
CrossRef citations to date
0
Altmetric
In vitro and animal studies

Trimethylamine N-oxide ameliorates hepatic damage including reduction of hepatic bile acids and cholesterol in Fxr-null mice

ORCID Icon, , & ORCID Icon
Pages 385-395 | Received 31 Oct 2023, Accepted 17 Apr 2024, Published online: 01 May 2024

References

  • Achard CS, Laybutt DR. 2012. Lipid-induced endoplasmic reticulum stress in liver cells results in two distinct outcomes: adaptation with enhanced insulin signaling or insulin resistance. Endocrinology. 153(5):2164–2177. doi: 10.1210/en.2011-1881.
  • Arteel GE. 2012. Beyond reasonable doubt: who is the culprit in lipotoxicity in NAFLD/NASH? Hepatology. 55(6):2030–2032. doi: 10.1002/hep.25721.
  • Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, de Alteriis G, Tenore GC, Colao A, Savastano S. 2018. Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients. 10(12)doi::1971. 3390/nu10121971 doi: 10.3390/nu10121971.
  • Bugianesi E. 2008. Nonalcoholic fatty liver disease (NAFLD) and cardiac lipotoxicity: another piece of the puzzle. Hepatology. 47(1):2–4. doi: 10.1002/hep.22105.
  • Cariou B, Staels B. 2007. FXR: a promising target for the metabolic syndrome? Trends Pharmacol Sci. 28(5):236–243. doi: 10.1016/j.tips.2007.03.002.
  • Chen Y-m, Liu Y, Zhou R-f, Chen X-l, Wang C, Tan X-y, Wang L-j, Zheng R-d, Zhang H-w, Ling W-h 2016. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 6(1):19076. doi: 10.1038/srep19076.
  • Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montaño AR, Hernández-Ruiz P, Amezcua-Guerra LM, Amedei A, Aguirre-García MM. 2023. Contribution of trimethylamine N-oxide (TMAO) to chronic inflammatory and degenerative diseases. Biomedicines. 11(2):431. doi: 10.3390/biomedicines11020431.
  • Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, Zhang T, Wang Y. 2018. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 17(1):286. doi: 10.1186/s12944-018-0939-6.
  • Dumas M-E, Rothwell AR, Hoyles L, Aranias T, Chilloux J, Calderari S, Noll EM, Péan N, Boulangé CL, Blancher C. 2017. Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep. 20(1):136–148. doi: 10.1016/j.celrep.2017.06.039.
  • Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 226(1):497–509. doi: 10.1016/S0021-9258(18)64849-5.
  • Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. 2018. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 24(7):908–922. doi: 10.1038/s41591-018-0104-9.
  • Guerra S, Mocciaro G, Gastaldelli A. 2022. Adipose tissue insulin resistance and lipidome alterations as the characterizing factors of non-alcoholic steatohepatitis. Eur J Clin Invest. 52(3):e13695. doi: 10.1111/eci.13695.
  • Ibrahim SH, Kohli R, Gores GJ. 2011. Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr. 53(2):131–140. doi: 10.1097/MPG.0b013e31822578db.
  • Kalavalapalli S, Leiva EG, Lomonaco R, Chi X, Shrestha S, Dillard R, Budd J, Romero JP, Li C, Bril F. 2023. Adipose tissue insulin resistance predicts the severity of liver fibrosis in patients with type 2 diabetes and NAFLD. J Clin Endocrinol Metab. 108(5):1192–1201. doi: 10.1210/clinem/dgac660.
  • Kim I, Morimura K, Shah Y, Yang Q, Ward JM, Gonzalez FJ. 2007. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis. 28(5):940–946. doi: 10.1093/carcin/bgl249.
  • Kitada H, Miyata M, Nakamura T, Tozawa A, Honma W, Shimada M, Nagata K, Sinal CJ, Guo GL, Gonzalez FJ. 2003. Protective role of hydroxysteroid sulfotransferase in lithocholic acid-induced liver toxicity. J Biol Chem. 278(20):17838–17844. doi: 10.1074/jbc.M210634200.
  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 19(5):576–585. doi: 10.1038/nm.3145.
  • Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, Gu X, Skye SM, Roberts AB, Wu Y. 2018. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight. 3(6):e99096. doi: 10.1172/jci.insight.99096.
  • Liu N, Meng Z, Lou G, Zhou W, Wang X, Zhang Y, Zhang L, Liu X, Yen Y, Lai L. 2012. Hepatocarcinogenesis in FXR-/- mice mimics human HCC progression that operates through HNF1alpha regulation of FXR expression. Mol Endocrinol. 26(5):775–785. doi: 10.1210/me.2011-1383.
  • Lombardo M, Aulisa G, Marcon D, Rizzo G. 2022. The influence of animal- or plant-based diets on blood and urine trimethylamine-N-oxide (TMAO) levels in humans. Curr Nutr Rep. 11(1):56–68. doi: 10.1007/s13668-021-00387-9.
  • Matsubara T, Li F, Gonzalez FJ. 2013. FXR signaling in the enterohepatic system. Mol Cell Endocrinol. 368(1–2):17–29. doi: 10.1016/j.mce.2012.05.004.
  • Miyata M, Funaki A, Fukuhara C, Sumiya Y, Sugiura Y. 2020. Taurine attenuates hepatic steatosis in a genetic model of fatty liver disease. J Toxicol Sci. 45(2):87–94. doi: 10.2131/jts.45.87.
  • Miyata M, Shinno K, Kinoshita T, Kinoshita Y, Sugiura Y. 2017. Fish oil feeding reverses hepatomegaly and disrupted hepatic function due to the lack of FXR signaling. J Toxicol Sci. 42(6):671–681. doi: 10.2131/jts.42.671.
  • Miyata M, Tanaka T, Takahashi K, Funaki A, Sugiura Y. 2021. Cholesterol-lowering effects of taurine through the reduction of ileal FXR signaling due to the alteration of ileal bile acid composition. Amino Acids. 53(10):1523–1532. doi: 10.1007/s00726-021-03068-7.
  • Mocciaro G, Allison M, Jenkins B, Azzu V, Huang-Doran I, Herrera-Marcos LV, Hall Z, Murgia A, Susan D, Frontini M. 2023. Non-alcoholic fatty liver disease is characterised by a reduced polyunsaturated fatty acid transport via free fatty acids and high-density lipoproteins (HDL). Mol Metab. 73:101728. doi: 10.1016/j.molmet.2023.101728.
  • Mocciaro G, Gastaldelli A. 2022. Obesity-related insulin resistance: the central role of adipose tissue dysfunction. Handb Exp Pharmacol. 274:145–164. doi: 10.1007/164_2021_573.
  • Nowiński A, Ufnal M. 2018. Trimethylamine N-oxide: a harmful, protective or diagnostic marker in lifestyle diseases? Nutrition. 46:7–12. doi: 10.1016/j.nut.2017.08.001.
  • Parlati L, Régnier M, Guillou H, Postic C. 2021. New targets for NAFLD. JHEP Rep. 3(6):100346. doi: 10.1016/j.jhepr.2021.100346.
  • Shen T, Shi A, Wei Y, Luo X, Xi L. 2021. Farnesoid X receptor as a promising therapeutic target for nonalcoholic fatty liver disease (NAFLD) and the current development of its agonists. Discov Med. 32(167):113–121.
  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. 2000. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 102(6):731–744. doi: 10.1016/s0092-8674(00)00062-3
  • Steinke I, Ghanei N, Govindarajulu M, Yoo S, Zhong J, Amin RH. 2020. drug discovery and development of novel therapeutics for inhibiting TMAO in models of atherosclerosis and diabetes. Front Physiol. 11:567899. doi: 10.3389/fphys.2020.567899.
  • Tan X, Liu Y, Long J, Chen S, Liao G, Wu S, Li C, Wang L, Ling W, Zhu H. 2019. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res. 63(17):e1900257. doi: 10.1002/mnfr.201900257.
  • Tang WHW, Li XS, Wu Y, Wang Z, Khaw K-T, Wareham NJ, Nieuwdorp M, Boekholdt SM, Hazen SL. 2021. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am Heart J. 236:80–86. doi: 10.1016/j.ahj.2021.01.020.
  • Theofilis P, Vordoni A, Kalaitzidis RG. 2022. Trimethylamine N-oxide levels in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Metabolites. 12(12):1243. doi: 10.3390/metabo12121243.
  • Tilg H, Adolph TE, Dudek M, Knolle P. 2021. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab. 3(12):1596–1607. doi: 10.1038/s42255-021-00501-9.
  • Trauner M, Fuchs CD. 2022. Novel therapeutic targets for cholestatic and fatty liver disease. Gut. 71(1):194–209. doi: 10.1136/gutjnl-2021-324305.
  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung Y-M. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 472(7341):57–63. doi: 10.1038/nature09922.
  • Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W. 2007. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67(3):863–867. doi: 10.1158/0008-5472.CAN-06-1078.
  • Zhao Z-H, Xin F-Z, Zhou D, Xue Y-Q, Liu X-L, Yang R-X, Pan Q, Fan J-G. 2019. Trimethylamine N-oxide attenuates high-fat high-cholesterol diet-induced steatohepatitis by reducing hepatic cholesterol overload in rats. World J Gastroenterol. 25(20):2450–2462. doi: 10.3748/wjg.v25.i20.2450.
  • Zhou D, Zhang J, Xiao C, Mo C, Ding BS. 2022. Trimethylamine-N-oxide (TMAO) mediates the crosstalk between the gut microbiota and hepatic vascular niche to alleviate liver fibrosis in nonalcoholic steatohepatitis. Front Immunol. 13:964477. doi: 10.3389/fimmu.2022.964477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.