2,709
Views
3
CrossRef citations to date
0
Altmetric
Reviews

The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 7349-7367 | Received 23 Dec 2020, Accepted 01 Oct 2021, Published online: 25 Oct 2021

References

  • Nelson VS, Flood KM, Bryant PR, et al. Limb deficiency and prosthetic management. 1. Decision making in prosthetic prescription and management. Arch Phys Med Rehabil. 2006;87(3 Suppl. 1):S3–S9.
  • Lower Limb Prosthetic Workgroup. Health technology assessment consensus document. Baltimore (MD): Centers for Medicare and Medicaid Services (CMS); 2017.
  • Sawers AB, Hafner BJ. Outcomes associated with the use of microprocessor-controlled prosthetic knees among individuals with unilateral transfemoral limb loss: a systematic review. J Rehabil Res Dev. 2013;50(3):273–314.
  • Blumentritt S, Schmalz T, Jarasch R. The safety of C-Leg: biomechanical tests. J Prosthet Orthot. 2009;21(1):2–17.
  • Blumentritt S. Biomechanische aspekte zur indikation von prothesenkniegelenken. Orthopäd Techn. 2004;55(6):508–524.
  • Berry D, Olson MD, Larntz K. Perceived stability, function, and satisfaction among transfemoral amputees using microprocessor and non-microprocessor controlled prosthetic knees: a multicenter survey. J Prosthet Orthot. 2009;21(1):32–42.
  • Kaufman KR, Levine JA, Brey RH, et al. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Gait Posture. 2007;26(4):489–493.
  • Segal AD, Orendurff MS, Klute GK, et al. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev. 2006;43(7):857–870.
  • Kahle JT, Highsmith MJ, Hubbard SL. Comparison of non-microprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev. 2008;45(1):1–14.
  • Seymour R, Engbretson B, Kott K, et al. Comparison between the C-Leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey. Prosthet Orthot Int. 2007;31(1):51–61.
  • Highsmith MJ, Kahle JT, Miro RM, et al. Ramp descent performance with the C-Leg and interrater reliability of the hill assessment index. Prosthet Orthot Int. 2013;37(5):362–368.
  • Hafner BJ, Willingham LL, Buell NC, et al. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Arch Phys Med Rehabil. 2007;88(2):207–217.
  • Highsmith MJ, Klenow TD, Kahle JT, et al. Effects of the Genium microprocessor knee system on knee moment symmetry during hill walking. Technol Innov. 2016;18(2–3):151–157.
  • Highsmith MJ, Klenow TD, Kahle JT, et al. Effects of the Genium knee system on functional level, stair ambulation, perceptive and economic outcomes in transfemoral amputees. Technol Innov. 2016;18(2–3):139–150.
  • Lura DJ, Wernke MW, Carey SL, et al. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control. Gait Posture. 2017;58:103–107.
  • Schmalz T, Blumentritt S, Marx B. Biomechanical analysis of stair ambulation in lower limb amputees. Gait Posture. 2007;25(2):267–278.
  • Highsmith MJ, Kahle JT, Shepard NT, et al. The effect of the C-Leg knee prosthesis on sensory dependency and falls during sensory organization testing. Technol Innov. 2014;2013(4):343–347.
  • Highsmith MJ, Kahle JT, Bongiorni DR, et al. Safety, energy efficiency, and cost efficacy of the C-Leg for transfemoral amputees: a review of the literature. Prosthet Orthot Int. 2010;34(4):362–377.
  • Chen C, Hanson M, Chaturvedi R, et al. Economic benefits of microprocessor controlled prosthetic knees: a modeling study. J Neuroeng Rehab. 2018;15:62.
  • Cutti AG, Lettieri E, Del Maestro M, et al. Stratified cost-utility analysis of C-Leg versus mechanical knees: findings from an Italian sample of transfemoral amputees. Prosthet Orthot Int. 2017;41(3):227–236.
  • Kannenberg A, Zacharias B, Pröbsting E. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: systematic review. J Rehabil Res Dev. 2014;51(10):1469–1496.
  • Hasenoehrl T, Schmalz T, Windhager R, et al. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study. Disabil Rehabil Assist Technol. 2017;95:1–9.
  • Mileusnic MP, Hahn A, Reiter S. Effects of a novel microprocessor-controlled knee, kenevo, on the safety, mobility, and satisfaction of lower-activity patients with transfemoral amputation. J Prosthet Orthot. 2017;29(4):198–205.
  • Kaufman KR, Bernhardt KA, Symms K. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): a clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Clin Biomech. 2018;58:116–122.
  • Lansade C, Vicaut E, Paysant J, et al. Mobility and satisfaction with a microprocessor-controlled knee in moderately active amputees: a multi-centric randomized crossover trial. Ann Phys Rehabil Med. 2018;61(5):278–285.
  • Hahn A, Lang M. Effects of mobility grade, age, and etiology on functional benefit and safety of subjects evaluated in more than 1200 C-Leg trial fittings in Germany. J Prosthet Orthot. 2015;27(3):86–95.
  • Hahn A, Lang M. Corrigendum to 35. J Prosthet Orthot. 2019;31(1):80.
  • Hahn A, Lang M, Stuckart C. Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings. Medicine. 2016;95(45):e5386.
  • NHS England: clinical commissioning policy: microprocessor controlled prosthetic knees; 2016 [cited 2020 Dec 12]. Available from: https://www.england.nhs.uk/wp-content/uploads/2016/12/clin-comm-pol-16061P.pdf
  • Local Coverage Determination (LCD) L33787, lower limb prosthesis; 2020 [cited 2020 Jan 1]
  • The Global Lower Extremity Amputation Study Group. Epidemiology of lower extremity amputation in centres in Europe, North America, and East Asia. Br J Surg. 2000;87(3):328–337.
  • van Velzen JM, van Bennekom CA, Polomski W, et al. Physical capacity and walking ability after lower limb amputation: a systematic review. Clin Rehabil. 2006;20(11):999–1016.
  • Hahn A, Kannenberg A. Zum nutzen mikroprozessorgesteuerter prothesenkniegelenke bei eingeschränkten außenbereichsgehern: eine aktualisierte systematische literaturanalyse (Do limited community ambulators benefit from using microprocessor controlled prosthetic knees? An update of a systematic review of the literature). Orthopäd Techn. 2020;71(5):46–57.
  • Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA); 2020 [cited 2020 Jan]. Available from: http://www.prisma-statement.org/
  • Hafner BJ. State-of-the-science evidence report guidelines. Washington (DC): American Academy of Orthotists & Prosthetists (AAOP); 2008.
  • Hedges LV. Distribution theory for glass's estimator of effect size and related estimators. J Educ Behav Stat. 1981;6(2):107–128.
  • DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188.
  • Stijnen T, Hamza TH, Özdemir P. Random effects meta‐analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010;29(29):3046–3067.
  • Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–1558.
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
  • Schwarzer G. Meta: an R package for meta-analysis. R News. 2007;7(3):40–45.
  • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48.
  • Davie-Smith F, Carse B. Comparison of patient-reported and functional outcomes following transition from mechanical to microprocessor knee in the low-activity user with a unilateral transfemoral amputation. Prosthet Orthot Int. 2021;45(3):198–204.
  • Jayaraman C, Mummidisetty CK, Albert MV, et al. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial. J Neuroeng Rehabil. 2021;18(1):88.
  • Wong K, Rheinstein J, Stern MA. Benefits for adults with transfemoral amputation and peripheral artery disease using microprocessor compared with non-microprocessor prosthetic knees. Arch Phys Med Rehabil. 2015;94(10):804–810.
  • Hafner BJ, Smith DG. Differences in function and safety between Medicare Functional Classification Level-2 and -3 transfemoral amputees and influence of prosthetic knee joint control. J Rehabil Res Dev. 2009;46(3):417–434.
  • Theeven P, Hemmen B, Rings F, et al. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees. J Rehabil Med. 2011;43(10):906–915.
  • Theeven PJ, Hemmen B, Geers RP, et al. Influence of advanced prosthetic knee joints on perceived performance and everyday life activity level of low-functional persons with a transfemoral amputation or knee disarticulation. J Rehabil Med. 2012;44(5):454–461.
  • Seelen HAM, Hemmen B, Theeven Patrick JR, et al. Functional added-value of prostheses with an electronically controlled stance and/or swing phase for patients with a unilateral transfemoral, a hip or a knee disarticulation. A clinical study. Final report; 2010.
  • Burnfield JM, Eberly VJ, Gronely JK, et al. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Prosthet Orthot Int. 2012;36(1):95–104.
  • Eberly VJ, Mulroy SJ, Gronley JK, et al. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Prosthet Orthot Int. 2014;38(6):447–455.
  • Morgan SJ. Do microprocessor knees improve outcomes in early prosthetic rehabilitation compared to nonmicroprocessor knees. Defence Technical Information Center Technical Report; [updated 2017 Sep 15; cited 2018 Sep 14]. Available from: https://apps.dtic.mil/dtic/tr/fulltext/u2/1063860.pdf
  • Theeven P, Hemmen B, Stevens C, et al. Feasibility of a new concept for measuring actual functional performance in daily life of transfemoral amputees. J Rehabil Med. 2010;42(8):744–751.
  • Miller WC, Speechley M, Deathe AB. The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch Phys Med Rehabil. 2001;82(8):1031–1037.
  • Tinetti ME. Clinical practice. Preventing falls in elderly persons. N Engl J Med. 2003;348(1):42–49.
  • Dite W, Connor HJ, Curtis HC. Clinical identification of multiple fall risk early after unilateral transtibial amputation. Arch Phys Med Rehabil. 2007;88(1):109–114.
  • Resnik L, Borgia M. Reliability of outcome measures for people with lower-limb amputations: distinguishing true change from statistical error. Phys Ther. 2011;91(4):555–565.
  • Thiele J, Schöllig C, Bellmann M, et al. Designs and performance of three new microprocessor-controlled knee joints. Biomed Tech. 2019;64(1):119–126.
  • Bellmann M, Köhler TM, Schmalz T. Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safety-relevant daily-life situations. Biomed Tech. 2019;64(4):407–420.
  • Bellmann M, Schmalz T, Blumentritt S. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints. Arch Phys Med Rehabil. 2010;91(4):644–652.
  • Prinsen EC, Nederhand MJ, Olsman J, et al. Influence of a user-adaptive prosthetic knee on quality of life, balance confidence, and measures of mobility: a randomised cross-over trial. Clin Rehabil. 2015;29(6):581–591.
  • Prinsen EC, Nederhand MJ, Sveinsdóttir HS, et al. The influence of a user-adaptive prosthetic knee across varying walking speeds: a randomized cross-over trial. Gait Posture. 2017;51:254–260.
  • Hafner BJ, Askew RL. Physical performance and self-report outcomes associated with use of passive, adaptive, and active prosthetic knees in persons with unilateral, transfemoral amputation: randomized crossover trial. J Rehabil Res Dev. 2015;52(6):677–700.
  • Campbell JH, Stevens PM, Wurdeman SR. OASIS 1: retrospective analysis of four different microprocessor knee types. J Rehabil Assist Technol Eng. 2020;7:205566832096847.
  • Kuhlmann A, Krüger H, Seidinger S, et al. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus. Eur J Health Econ. 2020;21(3):437–449.
  • Kuhlmann A, Hagberg K, Kamrad I, et al. A microprocessor-controlled prosthetic knee compared to non-microprocessor-controlled knees in individuals aged over 65 in Sweden – a cost-effectiveness and budget-IMPACT analysis; 2020–11, ISPOR Europe 2020; Milan, Italy. Value Health. 2020;23(S2):S576.
  • Wetz HH, Hafkemeyer U, Drerup B. Einfluss des C-Leg-Kniegelenk-Passteiles der Fa. Otto Bock auf die versorgungsqualität oberschenkelamputierter: Eine klinisch-biomechanische studie zur eingrenzung von indikationskriterien [The influence of the C-Leg knee shin system of Otto Bock on the care of above-knee amputees: a clinical biomechanical study to define indications]. Orthopäde. 2005;34(4):298–319.
  • MOBIS. The Otto Bock Mobility System 646A179 = GB-03-1301. Available from: www.ottobock.com
  • Gailey RS, Roach KE, Applegate EB, et al. The Amputee Mobility Predictor: an instrument to assess determinants of the lower-limb amputee's ability to ambulate. Arch Phys Med Rehabil. 2002;83(5):613–627.
  • The Rehabilitation of Individuals with Lower Limb Amputation Work Group. 2017. VA/DoD clinical practice guideline for rehabilitation of individuals with lower limb amputation. Version 2.0 – 2017. Available from: https://www.healthquality.va.gov/guidelines/Rehab/amp/VADoDLLACPG092817.pdf
  • Hofstad CJ, van der Linde H, van Limbeek J, et al. Prescription of prosthetic ankle-foot mechanisms after lower limb amputation. Cochrane Database Syst Rev. 2004;(1):CD003978.