1,166
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review)

, &
Pages 375-386 | Received 25 Jan 2007, Published online: 09 Jul 2009

References

  • Abu-Abed M, Mal TK, Kainosho M, MacLennan DH, Ikura M. Characterization of the ATP-binding domain of the sarco(endo)plasmic reticulum Ca2 + -ATPase: probing nucleotide binding by multidimensional NMR. Biochemistry 2002; 41: 1156–1164
  • Ahnert F, Schmid R, Altendorf K, Greie J-C. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K+-transporting KdpFABC P-type ATPase. Biochemistry 2006; 45: 11038–11046
  • Altendorf K, Gaßel M, Puppe W, Möllenkamp T, Zeek A, Boddien C, Fendler K, Bamberg E, Dröse S. Structure and function of the Kdp-ATPase of Escherichia coli. Acta Physiol Scand Suppl 1998; 643: 173–146
  • Anthonisen AN, Clausen JD, Andersen JP. Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2 + -ATPase. J Biol Chem 2006; 281: 31572–31582
  • Aravind L, Galperin MY, Koonin EV. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 1998; 23: 469–472
  • Axelsen KB, Palmgreen MG. Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 1998; 46: 84–101
  • Berkelman T, Garret-Engele P, Hoffman NE. The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca2 + -transporting ATPase. J Bacteriol 1994; 176: 4430–4436
  • Bertrand J, Altendorf K, Bramkamp M. Amino acid substitutions in putative filter regions III and IV in KdpA alter ion selectivity of the KdpFABC complex from E. coli. J Bacteriol 2004; 186: 5519–5522
  • Bissig KD, Wunderli-Ye H, Duda PW, Solioz M. Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochem J 2001; 357: 217–223
  • Bramkamp M, Altendorf K. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli. Biochemistry 2004; 43: 12289–12296
  • Bramkamp M, Altendorf K. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport. Biochemistry 2005; 44: 8260–8266
  • Buurman ET, Kim K-T, Epstein W. Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem 1995; 207: 6678–6685
  • Capieaux E, Rapin C, Thines D, Dupont Y, Goffeau A. Overexpression in Escherichia coli and purification of an ATP-binding peptide from the yeast plasma membrane H + -ATPase. J Biol Chem 1993; 268: 21895–21900
  • De Hertogh B, Lantin AC, Baret PV, Goffeau A. The archaeal P-type ATPases. J Bioenerg Biomembr 2004; 36: 135–142
  • Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S. Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci USA 2006; 103: 5302–5307
  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998; 280: 69–77
  • Durell SR, Bakker EP, Guy HR. Does the KdpA subunit from the high affinity K + -translocating P-type Kdp-ATPase have a structure similar to that of K+ channels?. Biophys J 2000; 78: 188–199
  • Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR. Evolutionary relationship between K+ channels and symporters. Biophys J 1999; 77: 775–788
  • Dutta SJ, Liu J, Stemmler AJ, Mitra B. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry 2007; 46: 3692–3703
  • Fan B, Rosen BP. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 2002; 277: 46987–46992
  • Fendler K, Dröse S, Altendorf K, Bamberg E. Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli. Biochemistry 1996; 35: 8009–8017
  • Fendler K, Dröse S, Epstein W, Altendorf K, Bamberg E. The Kdp-ATPase of Escherichia coli mediates an ATP-dependent, K+-independent electrogenic partial reaction. Biochemistry 1999; 38: 1850–1856
  • Gaßel M, Altendorf K. Analysis of KdpC of the K+-transporting KdpFABC complex of Escherichia coli. Eur J Biochem 2001; 268: 1772–1781
  • Gaßel M, Möllenkamp T, Puppe W, Altendorf K. The KdpF subunit is part of the K + -translocating Kdp complex of Escherichia coli and is responsible for the stabilization of the complex in vitro. J Biol Chem 1999; 274: 37901–37909
  • Gatto C, Wang AX, Kaplan JH. The M4M5 cytoplasmic loop of the Na,K-ATPase, overexpressed in Escherichia coli, binds nucleoside triphosphates with the same selectivity as the intact native protein. J Biol Chem 1998; 273: 10578–10585
  • Håkansson KO. The crystallographic structure of Na,K-ATPase N-domain at 2.6 Å resolution. J Mol Biol 2003; 332: 1175–1182
  • Haupt M, Bramkamp M, Coles M, Altendorf K, Kessler H. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes. J Mol Biol 2004; 342: 1547–1558
  • Haupt M, Bramkamp M, Coles M, Kessler H, Altendorf K. Prokaryotic Kdp-ATPase: recent insights into the structure and function of KdpB. J Mol Microbiol Biotechnol 2005; 10: 120–131
  • Haupt M, Bramkamp M, Heller M, Coles M, Deckers-Hebestreit G, Herkenhoff-Hesselmann B, Altendorf K, Kessler H. The holo-form of the nucleotide binding domain of the KdpFABC complex from Escherichia coli reveals a new binding mode. J Biol Chem 2006; 281: 9641–9649
  • Hilge M., Siegal G, Vuister GW, Guntert P, Gloor SM, Abrahams JP. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Nat Struct Biol 2003; 10: 468–474
  • Iwata S, Ostermeier C, Ludwig B, Michel H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 2002; 376: 660–669
  • Kimura Y, Inui M. Reconstitution of the cytoplasmic interaction between phospholamban and Ca2 + -ATPase of cardiac sarcoplasmic reticulum. Mol Pharmacol 2002; 61: 667–673
  • Kühlbrandt W, Zeelen J, Dietrich J. Structure, mechanism, and regulation of the Neurospora plasma membrane H + -ATPase. Science 2002; 297: 1692–1696
  • Liu J, Dutta SJ, Stemmler AJ, Mitra B. Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry 2006; 45: 763–772
  • Lutsenko S, Kaplan JH. Organization of P-type ATPases: significance of structural diversity. Biochemistry 1995; 34: 15607–15613
  • Maguire ME. MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg2 +  influx. J Bioenerg Biomembr 1992; 24: 319–328
  • Møller JV, Juul B, le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1996; 1286: 1–51
  • Moutin MJ, Cuillel M, Rapin C, Miras R, Anger M, Lompre AM, Dupont Y. Measurements of ATP binding on the large cytoplasmic loop of the sarcoplasmic reticulum Ca2 + -ATPase overexpressed in Escherichia coli. J Biol Chem 1994; 269: 11147–11154
  • Nucifora G, Chu L, Misra TK, Silver S. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 1989; 86: 3544–3548
  • Odermatt A, Krapf R, Solioz M. Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2 + , and Ag+ extrusion by CopB. Biochem Biophys Res Commun 1994; 202: 44–48
  • Odermatt A, Suter H, Krapf R, Solioz M. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 1993; 268: 12775–12779
  • Okkeri J, Bencomo E, Pietila M, Haltia T. Introducing Wilson disease mutations into the zinc-transporting P-type ATPase of Escherichia coli. The mutation P634L in the ‘hinge’ motif (GDGXNDXP) perturbs the formation of the E2P state. Eur J Biochem 2002; 269: 1579–1586
  • Okkeri J, Haltia T. The metal-binding sites of the zinc-transporting P-type ATPase of Escherichia coli. Lys693 and Asp714 in the seventh and eighth transmembrane segments of ZntA contribute to the coupling of metal-binding and ATPase activity. Biochim Biophys Acta 2006; 1757: 1485–1495
  • Okkeri J, Laakkonen L, Haltia T. The nucleotide-binding domain of the Zn2 + -transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP. Biochem J 2004; 377: 95–105
  • Olesen C, Sørensen TL, Nielsen RC, Møller JV, Nissen P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 2004; 306: 2251–2255
  • Raeymaekers L, Wuytack E, Willems I, Michiels CW, Wuytack F. Expression of a P-type Ca2 + -transport ATPase in Bacillus subtilis during sporulation. Cell Calcium 2002; 32: 93
  • Rensing C, Ghosh M, Rosen BP. Families of soft-metal-ion-transporting ATPases. J Bacteriol 1999; 181: 5891–587
  • Rensing C, Mitra B, Rosen BP. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 1997; 94: 14326–14331
  • Ridder IS, Dijkstra BW. Identification of the Mg2 + -binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Biochem J 1999; 339: 223–226
  • Sazinsky MH, Agarwal S, Arguello JM, Rosenzweig AC. Structure of the actuator domain from the Archaeoglobus fulgidus Cu+-ATPase. Biochemistry 2006a; 45: 9949–9955
  • Sazinsky MH, Mandal AK, Arguello JM, Rosenzweig AC. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. J Biol Chem 2006b; 281: 11161–11166
  • Sørensen TL, Møller JV, Nissen P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 2004; 304: 1672–1675
  • Therien AG, Karlish SJD, Blostein R. Expression and functional role of the gamma subunit of the Na, K-ATPase in mammalian cells. J Biol Chem 1999; 274: 12252–12256
  • Toyoshima C, Mizutani T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 2004; 430: 529–535
  • Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 2000; 405: 647–655
  • Toyoshima C, Nomura H, Tsuda T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 2004; 432: 361–368
  • Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 2002; 418: 605–611
  • Tsivkovskii R, MacArthur BC, Lutsenko S. The Lys1010-Lys1325 fragment of the Wilson's disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner. J Biol Chem 2001; 276: 2234–2242
  • Van der Laan M, Gaßel M, Altendorf K. Characterization of amino acid substitutions in KdpA, the K + -binding and -translocating subunit of the KdpFABC complex of Escherichia coli. J Bacteriol 2002; 184: 5491–5494
  • Zheng J, Knighton DR, ten Eyck LF, Karlsson R, Xuong N, Taylor SS, Sowadski JM. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 1993; 32: 2154–2161
  • Zhou, Y, Morais-Cabral, JH, Kaufman, A, MacKinnon, R. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature, 414:43–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.