309
Views
10
CrossRef citations to date
0
Altmetric
Original

Prothymosin alpha-receptor associates with lipid rafts in PHA-stimulated lymphocytes

, , , &
Pages 163-176 | Received 11 Nov 2004, Published online: 09 Jul 2009

References

  • Brown DA, London E. Structure of detergent-resistant membrane microdomains: does phase separation occur in biological membranes?. Biochem Biophys Res Commun 1997; 240: 1–7
  • Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998; 67: 199–225
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572
  • Eramo A, Sargiacomo M, Ricci-Vitiani L, Todaro M, Stassi G, Messina CGM, Parolini I, Loti F, Sette G, Peschle C, De Maria R. CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eur J Immunol 2004; 34: 1930–1940
  • Muppidi JR, Tschopp J, Siegel RM. Life and death decisions: Secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 2004; 21: 461–465
  • Panchal RG, Ruthel G, Kenny TA, Kallstrom GH, Lane D, Li L, Bavari S, Aman MJ. In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci USA 2003; 100: 15936–15941
  • Harder T, Simmons K. Caveolae, DIGs and the dinamic of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 1997; 9: 534–542
  • Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 2000; 275: 17221–17224
  • Pralle A, Keller P, Florin EL, Simmons K, Horber JK. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000; 148: 997–1008
  • Laude AJ, Prior IA. Plasma membrane microdomains: Organization, function and trafficking. Mol Memb Biol 2004; 21: 193–205
  • Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 2000; 12: 23–24
  • Drevot P, Langlet C, Guo XJ, Bernard AM, Colard O, Chauvin JP, Lasserre R, He HT. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J 2002; 15: 1899–1908
  • Viola A. The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol 2001; 22: 322–327
  • Gupta N, DeFranco AL. Visualizing lipid rafts dynamics and early signalling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 2003; 14: 432444
  • Cheng PC, Brown BK, Song W, Pierce SK. Translocation of the B cell antigen receptor into lipid rafts reveals a novel step in signaling. J Immunol 2001; 166: 3693–3701
  • Marmor MD, Julius M. Role for lipid rafts in regulating IL-2R signalling. Blood 2001; 98: 1489–497
  • Roepstorff K, Thomsem P, Sandvig K, van Deurs B. Secuestration of EGF receptors in non-caveolar lipid rafts inhibits ligand binding. J Biol Chem 2000; 277: 18954–18960
  • Liu P, Ying Y, Anderson RGW. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc Natl Acad Sci USA 1997; 94: 13666–13670
  • Davy A, Feuerstein C, Robbins SM. Signalling within a caveolae-like microdomain in human neuroblastoma cells in response to fibroblast growth factor. J Neurochem 2000; 74: 676–683
  • Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Holmgren PK, Magnusson KE, Stralfors P. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 1999; 13: 1961–1971
  • Piñeiro A, Cordero OJ, Nogueira M. Fifteen years of prothymosin alpha: contradictory past and new horizons. Peptides 2000; 9: 1433–1446
  • Trumbore MW, Berger SL. Prothymosin a is a nonspecific facilitator of nuclear processes: Studies of Run-on transcription. Protein Expr Purif 2000; 20: 414–420
  • Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003; 299: 223–226
  • Papanastasiou M, Baxevanis CN, Papamichail M. Promotion of murine antitumor activity by prothymosin alpha treatment: I Introduction of tumoricidal peritoneal cells producing high levels of tumour necrosis factor. Cancer Immunol Immunother 1992; 35: 145–150
  • Baxevanis CN, Gritzapis AD, Spanakos G, Tsitsilonis OE, Papamichail M. Induction of tumor-specific T lymphocyte responses in vivo by prothymosin alpha. Cancer Immunol Immunother 1995; 40: 410–418
  • Baxevanis CN, Frilingos S, Reclos GJ, Arsenis P, Katsiyiannis A, Anastasopoulos E, Seferiadis K, Tsolas D, Papamichail M. Enhancement of human T lymphocyte function by prothymosin alpha: increased production of interleukin-2 and expression of interleukin-2 receptors on normal human peripheral blood T lymphocytes. Immunopharmacol Immunotoxicol 1990; 12: 595–617
  • Baxevanis CN, Reclos GJ, Papamichail M, Tsokos GC. Prothymosin alpha restores the depressed autologous and allogeneic mixed lymphocyte responses in patients with systemic lupus erythematosus. Immunopharmacol Immunotoxicol 1987; 9: 429–440
  • Baxevanis CN, Spanakos G, Voutsas IF, Gritzapis AD, Tsitsilonis OE, Mamalaki A, Papamichail M. Increased generation of autologous tumor-reactive lymphocytes by anti-CD3 monoclonal antibody and prothymosin alpha. Cancer Immunol Immunother 1999; 48: 71–84
  • Cordero OJ, Sarandeses CS, Lopez JL, Cancio E, Regueiro BJ, Nogueira M. Prothymosin alpha enhances interleukin-2 receptor expression in normal human T-lymphocytes. Int J Immunopharmacol 1991; 13: 1059–1065
  • Cordero OJ, Sarandeses CS, Lopez JL, Nogueira M. Prothymosin alpha enhances human natural killer cell cytotoxicity: Role in mediating signals for NK activity. Lymphokine Cytokine Res 1992; 11: 277–285
  • Cordero OJ, Sarandeses CS, Lopez-Rodriguez JL, Nogueira M. The presence and cytotoxicity of CD16+ CD2- subset from PBL and NK cells in long-term IL-2 cultures enhanced by Prothymosin alpha. Immunopharmacology 1995; 29: 215–223
  • Lopez-Rodriguez JL, Cordero OJ, Sarandeses CS, Viñuela J, Nogueira M. Interleukin-2 killer cells: In vitro evaluation of combination with prothymosin alpha. Lymphokine Cytokine Res 1994; 13: 175–182
  • Lopez JL, Czarnecki J, Cordero OJ, Nogueira M. Enhancement of cytoskeletal polarisation of NK cells upon conjugation with target cells by prothymosin alpha. Int J Thymol 1995; 3: 296–303
  • Eckert K, Grunberg E, Garbin F, Maurer HR. Preclinical studies with prothymosin alpha 1 on mononuclear cells from tumour patients. Int J Immunopharmacol 1997; 19: 493–500
  • Eckert K, Grunberg E, Immenschuh P, Garbin F, Kreuser ED, Maurer HR. Interleukin-2 activated killer cell activity in colorectal tumor patients: Evaluation of in vitro effects by prothymosin alpha 1. J Cancer Res Clin Oncol 1997; 123: 420–428
  • Cordero OJ, Sarandeses CS, Nogueira M. Prothymosin alpha receptors on peripheral blood mononuclear cells. FEBS Letters 1994; 341: 23–27
  • Cordero OJ, Sarandeses CS, Nogueira M. Prothymosin a receptors on lymphocytes. J Interferon Cytokine Res 1995; 15: 731–737
  • Cordero OJ, Sarandeses CS, Nogueira M. Binding of 125I-prothymosin alpha to lymphoblasts through the non-thymosin alpha-1 sequence. Life Science 1996; 58: 1757–1770
  • Piñeiro A, Bugía B, Arias MP, Cordero OJ, Nogueira M. Identification of receptors for Prothymosin a on human lymphocytes. Biol Chem 2001; 382: 1473–1482
  • Ilangumaran S, Hoessli DC. Effects of cholesterol depletion by ciclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 1998; 335: 433–440
  • Ilangumaran S, Briol A, Hoessli DC. Distinct interactions among GPI-anchored, transmembrane and membrane associated intracellular proteins, and sphingolipids in lymphocyte and endothelial cell plasma membranes. Biochim Biophys Acta 1997; 1328: 27–36
  • Ilangumaran S, Arni S, van Echten-Deckert G, Borish B, Hoessli DC. Microdomain-dependent regulation of lck and Fyn protein-tyrosine kinases in T-lymphocyte plasma membranes. Mol Biol Cell 1999; 10: 891–905
  • Janes PW, Ley SC, Magee AI. Aggregation of lipid rafts accompanies signalling via the T cell antigen receptor. J Cell Biol 1999; 147: 447–461
  • Cheng PC, Dykstra ML, Mitchell RN, Pierce SK. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Medicine 1999; 190: 1549–1560
  • Salgado FJ, Lojo J, Alonso-Lebrero JL, Lluis C, Franco R, Cordero OJ, Nogueira M. A role for interleukin-12 in the regulation of T cell plasma membrane compartmentation. J Biol Chem 2003; 278: 24849–24857
  • Hanada KM, Nishijima Y, Akamasatu Y, Pagano RE. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatilinositol-anchored protein, in mammalian membranes. J Biol Chem 1995; 270: 6254–6260
  • Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells MβCD does not affect cell surface transport of a GPI-anchored protein. J Biol Chem 1999; 274: 34459–34466
  • Magee AI, Parmryd I. Detergent-resistant membranes and the protein composition of lipid rafts. Genome Biol 2003; 4: 234–237
  • Cuortoy PJ, Quintart J, Baudhuin P. Shift of equilibrium density induced by 3,3′-diaminobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase-containing organelles. J Cell Biol 1984; 98: 870–878
  • Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: A current overview. Cell 1993; 73: 5–8
  • Cerneus DP, Ueffing E, Posthuma G, Strous GJ, van der Ende A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis Role of cholesterol. J Biol Chem 1993; 268: 3150–3155
  • Schroeder R, London E, Brown D. Interactions between satured acyl chains confer detergent resistance to lipids and glycophosphatidylinositol-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behaviour. Proc Natl Acad Sci USA 1994; 91: 12310–12334
  • Ahmed SN, Brown DA, London E. On the origin of sphingolipid cholesterol-rich detergent-insoluble cell membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of a detergent insoluble, liquid ordered phase in model membranes. Biochemistry 1997; 36: 10944–10953
  • Friedrichson T, Kurzchalia T. Microdomains of GPI-anchored proteins in living cells revealed by cross-linking. Nature 1998; 394: 802–805
  • Varma R, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998; 394: 798–801
  • Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol Memb Biol 1999; 16: 145–156
  • Spiegel S, Kassis M, Wilchek M, Fishman PH. Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes. J Cell Biol 1984; 99: 1575–1581
  • Harder T, Scheifelle P, Verkade P, Simmons K. Lipid domain structure revealed by patching of membrane components. J Cell Biol 1998; 141: 929–942

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.