577
Views
36
CrossRef citations to date
0
Altmetric
Original

The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1A receptor

, &
Pages 241-249 | Received 22 Nov 2004, Published online: 09 Jul 2009

References

  • Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002; 3: 639–650
  • Cohen-Tannoudji J, Counis R, Hervé D, Shi DL, Vergé D. G protein coupled receptors: new insights into signaling and regulation. Biol Cell 2004; 96: 325–326
  • Edwards SW, Tan CM, Limbird LE. Localization of G-protein-coupled receptors in health and disease. Trends Pharmacol Sci 2000 2003; 21: 304–308
  • Bikker JA, Trumpp-Kallmeyer S, Humblet C. G-protein coupled receptors: models, mutagenesis, and drug design. J Med Chem 1998; 41: 2911–2927
  • Karnik SS, Gogonea S, Patil S, Saad Y, Takezako T. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 2003; 14: 431–437
  • Ostrom RS, Insel PA. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 2004; 143: 235–245
  • Ostrom RS, Post SR, Insel PA. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving Gs. J Pharmacol Exp Ther 2000; 294: 407–412
  • Ostrom RS. New determinants of receptor-effector coupling: trafficking and compartmentation in membrane microdomains. Mol Pharmacol 2002; 61: 473–476
  • Dreja K, Voldstedlund M, Vinten J, Tranum-Jensen J, Hellstrand P, Swärd K. Cholesterol depletion distrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler Thromb Vasc Biol 2002; 22: 1267–1272
  • Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Gαq-coupled protein receptors. J Biol Chem 2004; 279: 34614–34623
  • Liscum L, Underwood KW. Intracellular cholesterol transport and compartmentation. J Biol Chem 1995; 270: 15443–15446
  • Simons K, Ikonen E. How cells handle cholesterol. Science 2000; 290: 1721–1725
  • Schroeder F, Woodford JK, Kavecansky J, Wood WG, Joiner C. Cholesterol domains in biological membranes. Mol Membr Biol 1995; 12: 113–119
  • Rukmini R, Rawat SS, Biswas SC, Chattopadhyay A. Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys J 2001; 81: 2122–2134
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572
  • Burger K, Gimpl G, Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci 2000; 57: 1577–1592
  • Peroutka SJ, Howell TA. The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology 1994; 33: 319–324
  • Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002; 71: 533–554
  • Clapham DE. The G-protein nanomachine. Nature 1996; 379: 297–299
  • Pucadyil, TJ, Kalipatnapu, S, Chattopadhyay, A. The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 2005; (in press).
  • Chattopadhyay A, Harikumar KG, Kalipatnapu S. Solubilization of high affinity G-protein-coupled serotonin1A receptors from bovine hippocampus using pre-miceller CHAPS at low concentration. Mol Membr Biol 2002; 19: 211–220
  • Chattopadhyay A, Jafurulla MD, Kalipatnapu S, Pucadyil TJ, Harikumar KG. Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem Biophys Res Commun 2005; 327: 1036–1041
  • Pucadyil TJ, Chattopadhyay A. Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 2004; 1663: 188–200
  • Elias PM, Goerke J, Friend DS, Brown BE. Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J Cell Biol 1978; 78: 577–596
  • Nishikawa M, Nojima S, Akiyama T, Sankawa U, Inoue K. Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 1984; 96: 1231–1239
  • Severs NJ, Robenek H. Detection of microdomains in biomembranes: an appraisal of recent developments in freeze-fracture cytochemistry. Biochim Biophys Acta 1983; 737: 373–408
  • Akiyama T, Takagi S, Sankawa U, Inari S, Saitô H. Saponin-cholesterol interaction in the multibilayers of egg yolk lecithin as studied by deuterium nuclear magnetic resonance: digitonin and its analogues. Biochemistry 1980; 19: 1904–1911
  • Dontchev V, Ichev K, Ovtscharoff W, Surchev L. Light and electron microscopic demonstration of cholesterol distribution in membrane structures of the rat auditory cortex. Acta Histochem 1994; 96: 165–174
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76–85
  • Winter CG. Digitonin as an uncoupler of the partial reactions of Na+, K+-ATPase. Ann NY Acad Sci 1974; 242: 149–157
  • Pucadyil TJ, Chattopadhyay A. Exploring detergent insolubility in bovine hippocampal membranes: a critical assessment of the requirement for cholesterol. Biochim Biophys Acta 2004; 1661: 9–17
  • McClare CWF. An accurate and convenient organic phosphorus assay. Anal Biochem 1971; 39: 527–530
  • Amundson DM, Zhou M. Fluorometric method for the enzymatic determination of cholesterol. J Biochem Biophys Methods 1999; 38: 43–52
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911–917
  • Harikumar KG, Chattopadhyay A. Differential discrimination of G-protein coupling of serotonin1A receptors from bovine hippocampus by an agonist and an antagonist. FEBS Lett 1999; 457: 389–392
  • Kalipatnapu S, Jafurulla MD, Chandrasekaran N, Chattopadhyay A. Effect of Mg2 +  on guanine nucleotide sensitivity of ligand binding to serotonin1A receptors from bovine hippocampus. Biochem Biophys Res Commun 2004; 323: 372–376
  • Chattopadhyay A, London E. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. Anal Biochem 1984; 139: 408–412
  • Lakowicz JR. Principles of fluorescence spectroscopy2nd ed. Kluwer-Plenum Press, New York 1999
  • Lentz BR, Moore BM, Barrow DA. Light-scattering effects in the measurement of membrane microviscosity with diphenylhexatriene. Biophys J 1979; 25: 489–494
  • Bahouth SW, Malbon CC. Human β-adrenergic receptors: simultaneous purification of β1- and β2-adrenergic-receptor peptides. Biochem J 1987; 248: 557–566
  • Klein U, Gimpl G, Fahrenholz F. Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 1995; 34: 13784–13793
  • Chattopadhyay A. Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 2003; 122: 3–17
  • Lentz BR. Membrane fluidity as detected by diphenylhexatriene probes. Chem Phys Lipids 1989; 50: 171–190
  • Prendergast FG, Haugland RP, Callahan PJ. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 1981; 20: 7333–7338
  • Sojcic Z, Toplak H, Zuehlke R, Honegger UE, Buhlmann R, Wiesmann UN. Cultured human skin fibroblasts modify their plasma membrane lipid composition and fluidity according to growth temperature suggesting homeoviscous adaptation at hypothermic (30°C) but not at hyperthermic (40°C) temperatures. Biochim Biophys Acta 1992; 1104: 31–37
  • Kaiser RD, London E. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 1998; 37: 8180–8190
  • Lee AG. How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 2004; 1666: 62–87
  • Jensen MØ, Mouritsen OG. Lipids do influence protein function – the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 2004; 1666: 205–226
  • Estep TN, Mountcastle DB, Biltonen RL, Thompson TE. Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry 1978; 17: 1984–1989
  • Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF. Electron crystallography reveals the structure of metarhodopsin. EMBO J 2004; 23: 3609–3620

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.