109
Views
0
CrossRef citations to date
0
Altmetric
Articles

Menthol, Balance of Menthol/Menthone, and Essential Oil Contents of Mentha × Piperita L. under Foliar-Applied Chitosan and Inoculation of Arbuscular Mycorrhizal Fungi

, &
Pages 1012-1021 | Received 26 Apr 2019, Accepted 19 Sep 2020, Published online: 07 Dec 2020

References

  • Toghyani, M., Toghyani, M., Gheisari, A., Ghalamkari, G., Mohammadrezaei, M. (2010). Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed (Nigella sativa) and peppermint (Mentha piperita). Livest. Sci. 129(1-3): 173–178. doi: 10.1016/j.livsci.2010.01.021
  • Bupesh, G., Amutha, C., Nandagopal, S., Ganeshkumar, A., Sureshkumar, P., Murali, K. (2007). Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts-a medicinal plant. Acta. Agric. Slov. 89(1): 73–79. doi: 10.2478/v10014-007-0009-7
  • Samber, N., Khan, A., Varma, A., Manzoor, N. (2015). Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 53(10): 1496–1504. doi: 10.3109/13880209.2014.989623
  • Desam, N.R., Al-Rajab, A.J., Sharma, M., Mylabathula, M.M., Gowkanapalli, R.R., Albratty, M. (2017). Chemical constituents, in vitro antibacterial and antifungal activity of Mentha× piperita L. (peppermint) essential oils. J. King Saud Univ. Sci. 31(4): 528–533. doi: 10.1016/j.jksus.2017.07.013
  • Lazutka, J., Mierauskien, J., Slapšyt, G., Dedonyt, V. (2001). Genotoxicity of dill (Anethum graveolens l.), peppermint (Mentha× piperita l.) and pine (Pinus sylvestris l.) essential oils in human lymphocytes and drosophila melanogaster. Food Chem. Toxicol. 39(5): 485–492. doi: 10.1016/S0278-6915(00)00157-5
  • Iscan, G., Kirimer, N., Kürkcüoçlu, M.n., Baser, H.C., Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem. 50(14): 3943–3946. doi: 10.1021/jf011476k
  • Dragland, S., Senoo, H., Wake, K., Holte, K., Blomhoff, R. (2003). Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr. 133(5): 1286–1290. doi: 10.1093/jn/133.5.1286
  • Minami, M., Kita, M., Nakaya, T., Yamamoto, T., Kuriyama, H., Imanishi, J. (2003). The inhibitory effect of essential oils on herpes simplex virus type 1 replication in vitro. Microbiology and immunology. 47(9): 681–684. doi: 10.1111/j.1348-0421.2003.tb03431.x
  • Satsu, H., Matsuda, T., Toshimitsu, T., Mori, A., Mae, T., Tsukagawa, M., Kitahara, M., Shimizu, M. (2004). Regulation of interleukin-8 secretion in human intestinal epithelial caco-2 cells by -humulene. Biofactors. 21(1-4): 137–139. doi: 10.1002/biof.552210127
  • Vo, L.T., Chan, D., King, R.G. (2003). Investigation of the effects of peppermint oil and valerian on rat liver and cultured human liver cells. Clin. Exp. Pharmacol. Physiol. 30(10): 799–804. doi: 10.1046/j.1440-1681.2003.03912.x
  • Aziz, Z.A., Ahmad, A., Setapar, S.H.M., Karakucuk, A., Azim, M.M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M.A., Ashraf, G.M. (2018). Essential oils: Extraction techniques, pharmaceutical and therapeutic potential-a review. Curr. Drug Metab. 19(13): 1100–1110. doi: 10.2174/1389200219666180723144850
  • Bajalan, I., Ghasemi Pirbalouti, A. (2014). Variation in antibacterial activity and chemical compositions of essential oil from different populations of myrtle. Ind. Crops. Prod. 61(303-307).
  • Bistgani, Z.E., Siadat, S.A., Bakhshandeh, A., Ghasemi Pirbalouti, A., Hashemi, M. (2017). Morpho-physiological and phytochemical traits of (Thymus daenensis Celak.) in response to deficit irrigation and chitosan application. Acta. Physiol. Plant. 39(10): 231. doi: 10.1007/s11738-017-2526-2
  • Ghasemi Pirbalouti, A., Malekpoor, F., Salimi, A., Golparvar, A. (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Hort.. 217(114-122. doi: 10.1016/j.scienta.2017.01.031
  • Kong, F., Yamaoka, Y., Ohama, T., Lee, Y., Li-Beisson, Y. (2019). Molecular genetic tools and emerging synthetic biology strategies to increase cellular oil content in Chlamydomonas reinhardtii. Plant and Cell Physiology. 60(6): 1184–1196. doi: 10.1093/pcp/pcz022
  • El-Din, K.M.G., El-Wahed, M.A. (2005). Effect of some amino acids on growth and essential oil content of chamomile plant. Int. J. Agric. Biol. 7(376-380).
  • Asci, Ö.A., Deveci, H., Erdeger, A., Özdemir, K.N., Demirci, T., Baydar, N.G. (2018). The effects of brassinosteroid applications on growth and secondary metabolite production in Lavandula angustifolia ‘munstead’. Turkish Journal of Agriculture-Food Science and Technology. 6(10): 1448–1454. doi: 10.24925/turjaf.v6i10.1448-1454.2072
  • Vosoughi, N., Gomarian, M., Ghasemi Pirbalouti, A., Khaghani, S., Malekpoor, F. (2018). Essential oil composition and total phenolic, flavonoid contents and antioxidant activity of sage (Salvia officinalis l.) extract under chitosan application and irrigation frequencies. Ind. Crops Prod. 117(366-374). doi: 10.1016/j.indcrop.2018.03.021
  • Hafner, A., Lovric, J., Pepic, I., Filipovic-Grèic, J. (2011). Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J. Microencapsul. 28(8): 807–815. doi: 10.3109/02652048.2011.622053
  • Aider, M. (2010). Chitosan application for active bio-based film production and potential in the food industry. LWT-Food Sci Technol. 43(6): 837–842. doi: 10.1016/j.lwt.2010.01.021
  • Chen, M.-C., Mi, F.-L., Liao, Z.-X., Hsiao, C.-W., Sonaje, K., Chung, M.-F., Hsu, L.-W., Sung, H.-W. (2013). Recent advances in chitosan-based nanoparticles for oral delivery of macro- molecules. Adv. Drug Deliv. Rev. 65(6): 865–879. doi: 10.1016/j.addr.2012.10.010
  • Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E. (2011). Chitosan-a versatile semi- synthetic polymer in biomedical applications. Prog. Polym. Sci. 36(8): 981–1014. doi: 10.1016/j.progpolymsci.2011.02.001
  • Ahmad, B., Khan Mma, Jaleel H, Sadiq Y, Shabbir A M. U. (2017). Exogenously sourced γ-irradiated chitosan-mediated regulation of growth, physiology, quality attributes and yield in mentha piperita l. Turk. J. Biol. 41(2): 388–401. doi: 10.3906/biy-1608-64
  • EmamiBistgani, Z., Siadat, S.A., Bakhshandeh, A., Ghasemi Pirbalouti, A., Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis celak. The Crop Journal. 5: 407–415. doi: 10.1016/j.cj.2017.04.003
  • Kim, H.-J., Chen, F., Wang, X., Rajapakse, N.C. (2005). Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 53(9): 3696–3701. doi: 10.1021/jf0480804
  • Lei, C., Ma, D., Pu, G., Qiu, X., Du, Z., Wang, H., Li, G., Ye, H., Liu, B. (2011). Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua l. Ind. Crops Prod. 33(1): 176–182. doi: 10.1016/j.indcrop.2010.10.001
  • Li, Y., Zhao, X., Xia, X., Luan, Y., Du, Y., Li, F. (2008). Effects of oligochitosan on the photo- synthetic parameter of brassicanapus seedlings under drought stress. Acta. Agronomica Sinica. 34(2): 326. doi: 10.3724/SP.J.1006.2008.00326
  • Malekpoor, F., Ghasemi Pirbalouti, A., Salimi, A. (2016). Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Res. Crops. 17(2): 354–359. doi: 10.5958/2348-7542.2016.00060.7
  • Pandey, P., Verma, M.K., De, N. (2018). Chitosan in agricultural context-a review. Bull. Env. Pharmacol. Life Sci. 7(87-96).
  • Urcoviche, R.C., Gazim, Z.C., Dragunski, D.C., Barcellos, F.G., Alberton, O. (2015). Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Ind. Crops Prod. 67(103-107. doi: 10.1016/j.indcrop.2015.01.016
  • Reinhart, K.O., Lekberg, Y., Klironomos, J., Maherali, H. (2017). Does responsiveness to arbuscular mycorrhizal fungi depend on plant invasive status? Ecology and Evolution. 7(16): 6482-6492. doi: 10.1002/ece3.3226
  • Daei, G., Ardekani, M., Rejali, F., Teimuri, S., Miransari, M. (2009). Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant Physiol. 166(6): 617–625. doi: 10.1016/j.jplph.2008.09.013
  • Miransari, M. (2014). Mycorrhizal fungi to alleviate compaction stress on plant growth. Use of microbes for the alleviation of soil stresses. Springer.
  • Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M., and Salehi, A. (2019). Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes. J. Environ Manage. 231(182-188). doi: 10.1016/j.jenvman.2018.10.040
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation.
  • Mclafferty, F.W., Stauffer, D.B. (2009). Wiley registry of mass spectral data. John Wiley.
  • Augé, R.M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11(1): 3–42. doi: 10.1007/s005720100097
  • Yin, H., Fretteì, X.C., Christensen, L.P., Grevsen, K. (2011). Chitosan oligosaccharides promote the content of polyphenols in greek oregano (Origanum vulgare ssp. Hirtum). J. Agric. Food Chem. 60(1): 136–143. doi: 10.1021/jf204376j
  • Zhao, J., Davis, L.C., Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23: 83–333. doi: 10.1016/j.biotechadv.2005.01.003
  • Arango, M., Ruscitti, M., Ronco, M., Beltrano, J. (2012). Mycorrhizal fungi inoculation andphosphorus fertilizer on growth, essential oil production and nutrient uptake in peppermint (Mentha piperita l.). Rev. Bras. Plantas Med. 14(4): 692–699. doi: 10.1590/S1516-05722012000400018
  • Gupta, M., Prasad, A., Ram, M., Kumar, S. (2002). Effect of the vesicular-arbuscular mycorrhizal (vam) fungus glomus fasciculatum on the essential oil yield-related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour. Technol. 81(1): 77–79. doi: 10.1016/S0960-8524(01)00109-2
  • Karagiannidis, N., Thomidis, T., Lazari, D., Panou-Filotheou, E., Karagiannidou, C. (2011). Effect of three greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci. Hort. 129(2): 329–334. doi: 10.1016/j.scienta.2011.03.043
  • Augé, R.M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11(1): 3–42. doi: 10.1007/s005720100097
  • Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., De Mastro, G. (2017). Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis. Industrial Crops and Products. 102(144-153). doi: 10.1016/j.indcrop.2017.03.010
  • Miransari, M. (2014). Mycorrhizal fungi to alleviate compaction stress on plant growth. In. Mycorrhizal fungi to alleviate compaction stress on plant growth. Use of microbes for the alleviation of soil stresses: Springer.
  • Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K., Novak, J. (2006). Arbuscular mycorrhiza alters the concentration of essential oils in oregano (Origanum sp., lamiaceae). Mycorrhiza. 16(6): 443–446. doi: 10.1007/s00572-006-0062-9
  • Copetta, A., Lingua, G., Berta, G. (2006). Effects of three am fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum l. Var. Genovese. Mycorrhiza. 16(7): 485–494. doi: 10.1007/s00572-006-0065-6
  • Rapparini, F., Peñuelas, J. (2014). Mycorrhizal fungi to alleviate drought stress on plant growth. In. Mycorrhizal fungi to alleviate drought stress on plant growth. Use of microbes for the alleviation of soil stresses, Volume 1: Springer.
  • Ahmad, B., Jaleel, H., Shabbir, A., Khan, M.M.A., Sadiq, Y. (2019). Concomitant application of depolymerized chitosan and ga3 modulates photosynthesis, essential oil and menthol production in peppermint (Mentha piperita). Sci. Hort. 246: 371–379. doi: 10.1016/j.scienta.2018.10.031
  • Chakraborty, M., Karun, A., Mitra, A. (2009). Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J. Plant Physiol. 166: 63–71. doi: 10.1016/j.jplph.2008.02.004
  • El-Sawy, N.M., El-Rehim, H.A.A., Elbarbary, A.M., Hegazy, E.-S.A. (2010). Radiation- induced degradation of chitosan for possible use as a growth promoter for agricultural purposes. Carbohydr. Polym. 79(3): 555–562. doi: 10.1016/j.carbpol.2009.09.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.