242
Views
29
CrossRef citations to date
0
Altmetric
Mini Review

α-Galactosidases and their applications in biotransformations

, &
Pages 79-89 | Published online: 11 Jul 2009

References

  • Ajisaka K, Fujimoto H, Isomura M. Regioselective transglycosylation in the synthesis of oligosaccharides: comparison of β-galactosidases and sialidases of various origins. Carbohydr Res 1994; 259: 103–115
  • Baik SH, Saito K, Yokota A, Asano K, Tomita F. Molecular cloning and high-level expression in Escherichia coli of fungal α-galactosidase from Absida corymbifera. J Biosci Bioeng 2000; 90: 168–173
  • Beier EM, Shono N, Kozlova I, Viedershain GY. Relationship of multiple forms of human α-d-galactosidase and β-d-fructosidase in normal and Fabry's disease. Biochem Biophys Acta 1990; 1038: 386–389
  • Biely P, Puchart V, Coté GL. Enzymic α-galactosylation of a cyclic glucotetrasaccharide derived from alternan. Carbohydr Res 2001; 332: 299–303
  • Binnington B, Lingwood D, Nutikka A, Lingwood CA. Effect of globotriaosyl ceramide fatty acid α-hydroxylation on the binding by verotoxin 1 and verotoxin 2. Neurochem Res 2002; 27: 807–813
  • Bojarová P, Petrásková L, Ferrandi EE, Monti D, Pelantová H, Kuzma M, Simerská P, Křen V. Glycosyl azides – an alternative way to disaccharides. Adv Synth Catal 2007; 349: 1514–1520
  • Bojarová-Fialová P, Křen V. Enzymatic approaches to O-glycoside introduction: glycosidases. Comprehensive glycoscience, JP Kamerling. Oxford, Elsevier 2007; 453–487
  • Brumer H, Sims PFG, Sinnott ML. Lignocellulose degradation by Phanerochaete chrysosporium: purification and characterization of the main α-galactosidase. Biochem J 1999; 339: 43–53
  • Bucke C. Oligosaccharide synthesis using glycosidases. J Chem Technol Biotechnol 1996; 67: 217–220
  • Bucke C, Rastall RA. Synthesising sugars by enzymes in reverse. Chem Br 1990; 7: 675–678
  • Bulpin PV, Gidley MJ, Jeffcoat R, Underwood DJ. Development of a biotechnological process for the modification of galactomannan polymers with plant α-galactosidase. Carbohydr Polym 1998; 12: 155–168
  • Chen Y, Jin M, Goodrich L, Smith G, Coppola G, Calhoun DH. Purification and characterization of human α-galactosidase A expressed in insect cells using a baculovirus vector. Prot Express Purif 2000; 20: 228–236
  • Chinen I, Nakamura T, Fukuda N. Purification and properties of α-galactosidase from stalks of Saccharum officinarum (sugar cane). J Biochem 1981; 90: 1453–1461
  • Clarke JH, Davidson K, Rixon JH, Halstead JR, Fransen MP, Gilbert HJ, Hazlewood GP. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Appl Microbiol Biotechnol 2000; 53: 661–667
  • Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, Kelly RM. Biochemical analysis of Thermotoga maritima GH36 α-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry 2007; 46: 3319–3330
  • Davis MO, Hata DJ, Johnson SA, Walker JC, Smith DS. Cloning, expression and characterization of a blood group B active recombinant α-d-galactosidase from soybean (Glycine max). Biochem Mol Biol Int 1996; 39: 471–485
  • Davis MO, Hata DJ, Johnson SA, Jones DE, Harmata MA, Evans ML, Walker JC, Smith DS. Cloning, sequence, and expression of a blood group B active recombinant α-d-galactosidase from pinto bean (Phaseolus vulgaris). Biochem Mol Biol Int 1997; 42: 453–467
  • Dey P. Inhibition, transgalactosylation and mechanism of action of sweet almond a-galactosidase. Biochim Biophys Acta 1969; 191: 644–652
  • Dey P, Pridham JB. Biochemistry of α-galactosidases. Adv Enzymol Relat Areas Mol Biol 1972; 36: 91–130
  • Dey PM, Patel S, Brownleader MD. Induction of α-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonobola) gum. Biotechnol Appl Biochem 1993; 17: 361–371
  • Dion M, Nisole A, Spangenberg P, Andre C, Glottin-Flury A, Mattes R, Tellier C, Rabiller C. Modulation of the regioselectivity of a Bacillus α-galactosidase by directed evolution. Glycoconjugate J 2001a; 18: 215–223
  • Dion M, Osanjo G, Andre C, Spangenberg P, Rabiller C, Tellier C. Identification by saturation mutagenesis of a single residue involved in the α-galactosidase AgaB regioselectivity. Glycoconjugate J 2001b; 18: 457–464
  • Driedonks RA, Fellinger AJ, Verbakel JMA, Verhue WM, Verrips CT. Food biotechnology: from basic to applied microbiology. J Struct Biol 1990; 104: 128–133
  • Druckhammer D, Hennen WJ, Pederson RL, Barbas CF, Gautheron CM, Krach T, Wong Ch. Enzyme catalysis in synthetic carbohydrate chemistry. Synthesis 1991; 7: 499–525
  • Eneyskaya EV, Golubev AM, Kachurin AM, Savel′ev AN, Neustroev KN. Transglycosylation activity of α-d-galactosidase from Trichoderma reesei. An investigation of the active site. Carbohydr Res 1997; 305: 83–91
  • Eneyskaya AV, Golubev AM, Kachurin AM, Savel'ev AN, Neustroev KN. Transglycosylation activity of α-d-galactosidase from Trichoderma reesei, an investigation of the active site. Carbohydr Res 1998; 305: 83–91
  • Fridjonsson O, Mattes R. Production of recombinant α-galactosidase in Thermus thermophilus. Appl Environ Microbiol 2001; 67: 4192–4198
  • Fridjonsson O, Watzlawick H, Mattes R. Thermoadaptation of α-galactosidase AgaB1 in Thermus thermophilus. J Bacteriol 2002; 184: 3385–3391
  • Fujimoto Z, Kaneko S, Momma M, Kobayashi H, Mizuno H. Crystal structure of rice α-galactosidase complexed with d-galactose. J Biol Chem 2003; 278: 20313–20318
  • Fuller M, Lovejoy M, Brooks DA, Harkin ML, Hopwood JJ, Meikle PJ. Immunoquantification of α-galactosidase. Evaluation for the diagnosis of Fabry disease. Clin Chem 2004; 50: 1979–1985
  • Garman SC. Structural studies on α-Gal and α-NAGal: the atomic basis of Fabry and Schindler disease. Biocatal Biotransform 2006; 24: 129–136
  • Garman SC. Structure–function relationship in α-galactosidase A. Acta Paediatr 2007; 96: 6–16
  • Garman SC, Garboczi DN. The molecular defect leading to Fabry disease: structure of human α-galactosidase. J Mol Biol 2004; 337: 319–335
  • Garman SC, Hannick L, Zhu A, Garbosci DN. The 1.9 Å structure of α-N-acetylgalactosaminidase: molecular basic of glycosidase deficiency diseases. Structure 2002; 10: 425–434
  • Ghazi S, Rooke JA, Galbraith H. Improvement of the nutritive value of soybean meal by protease and α-d-galactosidase treatment in broiler cockerels and broiler chicks. Br Poult Sci 2003; 44: 410–418
  • Golubev AM, Nagem RA, Brandao Neto JR, Neustroev KN, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Savel'ev AN, Polikarpov I. Crystal structure of α-galactosidase from Trichoderma reesei and its complex with galactose: implication for catalytic mechanism. J Mol Biol 2004; 339: 413–422
  • Gote M, Umalkar H, Khan I, Khire J. Thermostable α-galactosidase from Bacillus stearothermophilus (NCIM 5146) and its application in the removal of flatulence causing factors from soymilk. Process Biochem 2004; 39: 1723–1729
  • Guimaraes VM, de Rezende ST, Moreira MA, de Barros EG, Felix CR. Characterization of α-galactosidases from germinating soybean seed and their use for hydrolysis of oligosaccharides. Phytochemistry 2001; 58: 67–73
  • Haataja S, Zhang Z, Tikkanen K, Magnusson G, Finne J. Determination of the cell adhesion specificity of Streptococcus suis with the complete set of monodeoxy analogues of globotriose. Glycoconjugate J 1999; 16: 67–71
  • Hakamata W, Nishio T, Oku T. Hydrolytic activity of α-galactosidases against deoxy derivatives of p-nitrophenyl α-d-galactopyranoside. Carbohydr Res 2000; 324: 107–115
  • Halstead JR, Fransen MP, Eberhart, Park AJ, Gilbert HJ, Hazlewood GP. α-Galactosidase A from Pseudomonas fluorescens subsp. cellulosa: cloning, high level expression and its role in galactomannan hydrolysis. Microbiol Lett 2000; 192: 197–203
  • Hart DO, He S, Chany CJ, Withers SG, Sims PFG, Sinnott ML, Brumer H. Identification of Asp-130 as the catalytic nucleophile in the main α-galactosidase from Phanerochaete chrysosporium, a family 27 glycosyl hydrolase. Biochemistry 2000; 39: 9826–9836
  • Hashimoto H, Katayama Ch, Goto M, Okinaga T, Kitahata S. Transgalactosylation catalyzed by (α-galactosidase from Candida guilliermondii H-404. Biosci Biotechnol Biochem 1995; 59: 619–623
  • Hinz SWA, Doeswijk-Voragen ChHL, van den Broek LAM, Vincken JP, Voragen AGJ. Increasing the transglycosylation activity of (α-galactosidase from Bifidobacterium adolescentis DSM 20083 by site-directed mutagenesis. Biotechnol Bioeng 2006; 93: 122–131
  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989; 77: 51–59
  • Huňková Z, Kubátová A, Weignerová L, Křen V. Induction of extracellular glycosidases in filamentous fungi and their potential use in chemotaxonomy. Czech Mycol 1999; 51: 71–87
  • Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC, Fan JQ. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 2007; 406: 285–295
  • Kaneko R, Kusakabe I, Sakai Y, Murakami K. Substrate specificity of α-galactosidase from Mortierella vinacea. Agric Biol Chem 1990; 54: 237–238
  • King MR, Yernool DA, Eveleigh DE, Chassy BM. Thermostable α-galactosidase from Thermotoga neapolitana: cloning, sequencing and expression. Microbiol Lett 1998; 163: 37–42
  • Kitahata S, Kawanaka S, Dombou M, Katayama C, Goto M, Hashimoto H. Synthesis of 6-O-(α-d-galactopyranosyl l-ascorbic acid by Candida guilliermondii H-404 (α-galactosidase. J Appl Glycosci 1996; 43: 173–177
  • Koizumi K, Tanimoto T, Okada Y, Hara K, Fujita K, Hashimoto H, Kitahata S. Isolation and characterization of novel heterogeneous branched cyclomalto-oligosaccharides (cyclodextrins) produced transgalactosylation with α-galactosidase from coffee bean. Carbohydr Res 1995; 278: 129–142
  • Koizumi K, Tanimoto T, Kubota Y, Kitahata S. Enzymatic synthesis, isolation, and analysis of novel α- and β-galactosyl-cycloisomalto-octaoses. Carbohydr Res 1998; 305: 393–400
  • Koshland DE. Stereochemistry and the mechanism of enzymatic reactions. Biol Rev Cambridge Philos Soc 1953; 28: 416–436
  • Kotwal SM, Gote MM, Sainkar SR, Khan MI, Khire JM. Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soymilk hydrolysis. Process Biochem 1998; 33: 337–343
  • Křen V, Martínková L. Glycosides in medicine: The role of glycosidic residue in biological activity. Curr Med Chem 2001; 8: 1303–1328
  • Křen V, Thiem J. Glycosylation employing bio-systems: from enzymes to whole cells. Chem Soc Rev 1997; 26: 463–473
  • Leder S, Hartmeier W, Marx SP. Galactosidase of Bifidobacterium adolescentis DSM 20083. Curr Microbiol 1999; 38: 101–106
  • Lenny LL, Hurst R, Zhu A, Goldstein J, Galbraith RA. Multiple-unit and second transfusions of red cells enzymatically converted from group B to group O: report on the end of phase 1 trials. Transfusion 1995; 35: 899–902
  • Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T, Vincent J, Robb A, Brinen LS, Miller MD, McPhillips TM, Miller MA, Scheibe D, Canaves JM, Guda C, Jaroszewski L, Selby TL, Elsliger MA, Wooley J, Taylor SS, Hodgson KO, Wilson IA, Schultz PG, Stevens RC. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci USA 2002; 99: 11664–11669
  • Linden JC. Immobilised α-d-galactosidase in the sugar beet industry. Enzyme Microb Technol 1982; 4: 130–136
  • Linthorst GE, Hollak CEM, Donker-Koopman WE, Strijland A, Aerts MFG. Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase α and β. Kidney Int 2004; 66: 1589–1595
  • Liu QP, Sulzenbacher G, Yuan H, Bennett EP, Pietz G, Saunders K, Spence J, Nudelman E, Levery SB, White T, Neveu JM, Lane WS, Bourne Z, Olsson ML, Henrissat B, Clausen H. Bacterial glycosidases for the production of universal red blood cells. Nat Biotechnol 2007; 25: 454–464
  • Liu QP, Yuan H, Bennett EP, Levery SB, Nudelman E, Spence J, Pietz G, Saunders K, White T, Olsson ML, Henrissat B, Sulzenbacher G, Clausen H. Identification of a GH 110 subfamily of α 1,3-galactosidases, novel enzymes for removal of the α 3gal xenotransplantation antigen. J Biol Chem 2008; 283: 8545–8554
  • Ly HD, Withers SG. Mutagenesis of glycosidases. Annu Rev Biochem 1999; 68: 487–522
  • Ly HD, Howard S, Shum K, He S, Zhu A, Withers SG. The synthesis, testing and use of 5-fluoro-α-d-galactosyl fluoride to trap an intermediate on green coffee bean α-galactosidase and identify the catalytic nucleophile. Carbohydr Res 2000; 329: 539–547
  • McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 1994; 276: 885–892
  • Maranville E, Zhu A. Assessment of amino-acid substitutions at tryptophan 16 in α-galactosidase. Eur J Biochem 2000a; 267: 1495–1501
  • Maranville E, Zhu A. The carboxyl terminus of coffee bean α-galactosidase is critical for enzyme activity. Arch Biochem Biophys 2000b; 373: 225–230
  • Margolles-Clark E, Tenkanen M, Luonteri E, Penttila M. Three α-galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur J Biochem 1996; 240: 104–111
  • Matsuo I, Fujimoto H, Isomura M, Ajisaka K. Chemoenzymatic synthesis of Galα 1-3Gal, Galα 1-3Galβ 1-4GlcNAc, and their PEG-conjugates. Bioorg Med Chem Lett 1997; 7: 255–258
  • Mitsutomi M, Ohtakara A. Isolation and identification of oligosaccharides produced from raffinose by transgalactosylation reaction of thermostable α-galactosidase from Pycnoporus cinnabarimus. Agric Biol Chem 1988; 52: 2305–2311
  • Nieder V, Marx SP, Gallego RG, Kemerling JP, Vliegenthart JFG, Elling L. Synthesis of nucleotide-activated disaccharides with β -galactosidase from Bacillus circulans and α-galactosidase from Bifidobacterium adolescentis. J Mol Catal B: Enzym 2003; 21: 157–166
  • Nilsson KGI. A simple strategy for changing the regioselectivity of glycosidase-catalysed formation of disaccharides. Carbohydr Res 1987; 167: 95–103
  • Nilsson KGI. A simple strategy for changing the regioselectivity of glycosidase-catalysed formation of disaccharides: part II, enzymic synthesis in situ of various acceptor glycosides. Carbohydr Res 1988; 180: 53–59
  • Nilsson KGI. Glycosidase-catalysed synthesis of di- and trisaccharide derivatives related to antigens involved in the hyperacute rejection of xenotransplants. Tetrahedron Lett 1997; 38: 133–136
  • Okuyama M, Mori H, Wanatabe K, Kimura A, Xchiba S. Glucosidase mutant catalyzes “α-glycosynthase”-type reaction. Biosci Biotechnol Biochem 2002; 66: 928–933
  • Olsson ML, Hill CA, de la Vega H, Liu QP, Stroud MR, Valdinocci J, Moon S, Clausen H, Kruskall MS. Universal red blood cells – enzymatic conversion of blood group A and B antigens. Transfu Clin Biol 2004; 11: 33–39
  • Paek NS, Kang DJ, Lee HS, Lee JJ, Choi YJ, Kim TH, Kim KW. Enzymatic synthesis of 6-O-α-d-galactopyranosyl-1-deoxynojirimycin using α-galactosidase from green coffee beans. Biosci Biotechnol Biochem 1998; 62: 588–589
  • Ratto M, Siika-aho M, Buchert J, Valkeajarvi A, Viikari L. Enzymatic hydrolysis of isolated and fibre-bound galactoglucomannans from pine-wood and pine kraft pulp. Appl Microbiol Biotechnol 1993; 40: 449–454
  • Ryd M, Alfredsson H, Blomberg L, Andersson A, Lindberg AA. Purification of Shiga toxin by α-d-galactose-(1→4)-β-d-galactose-(1→4)-β-d-glucose-(1→) receptor ligand-based chromatography. FEBS Lett 1989; 258: 320–322
  • Rye CS, Withers CS. Glycosidase mechanisms. Curr Opin Chem Biol 2000; 4: 573–580
  • Sakai K, Tachiki T, Kumagai H, Tochikura T. Hydrolysis of α-d-galactosyl oligosaccharides in soymilk by α-d-galactosidase of Bifidobacterium breve 203. Agric Biol Chem 1987; 51: 315–322
  • Simerská P, Kuzma M, Pišvejcová A, Weignerová L, Macková M, Riva S, Křen V. Application of selectivity acylated glycosides for the α-galactosidase-catalyzed synthesis of disaccharides. Folia Microbiol 2003; 48: 329–337
  • Simerská P, Kuzma M, Monti D, Riva S, Macková M, Křen V. Unique transglycosylation potential of extracellular α-d-galactosidase from Talaromyces flavus. J Mol Catal B: Enzym 2006; 39: 128–134
  • Simerská P, Monti D, Cechová I, Pelentová H, Macková M, Bezouška K, Riva S, Křen V. Induction and characterization of an unusual α-d-galactosidase from Talaromyces flavus. J Biotechnol 2007; 128: 61–71
  • Singh S, Ščigelová M, Crout DHG. 1999. Glycosidase-catalysed synthesis of (α-galactosyl epitopes important in xenotransplantations and toxin binding using the (α-galactosidase from Penicillium multicolor. J Chem Soc Chem Commun 2065–2066.
  • Sinnott ML. Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 1990; 90: 11711202
  • Spangenberg P, André C, Dion M, Rabiller C, Mattes R. Comparative study of new α-galactosidases in transglycosylation reaction. Carbohydr Res 2000; 329: 65–73
  • Spangenberg P, André C, Langlois V, Dion M, Rabiller C. Galactosyl fluoride in transfer reactions mediated by the green coffee beans α-galactosidase in ice. Carbohydr Res 2002; 337: 221–228
  • Sugawara S, Nakagawa R, Urashima T, Sato T, Muratubaki T, Sayama K. Transgalactosylation products from melibiose by the α-galactosidase of Absidia corymbifera. Agric Biol Chem 1990; 54: 211–213
  • Ulezlo IV, Zaprometova OM. Microbial α-galactosidase. Appl Biochem Microbiol 1982; 18: 1–12
  • van Rantwijk F, Woudenberg-van Oosterom M, Sheldon RA. Glycosidase-catalyzed synthesis of alkyl glycosides. J Mol Catal B: Enzym 1999; 6: 511–532
  • Varbanets LD, Malanchuk VM, Buglova TT, Kuhlmann RA. Penicillium sp. 23 α-galactosidase: purification and substrate specificity. Carbohydr Polym 2001; 44: 357–363
  • Vasella A, Davies GJ, Böhm M. Glycosidase mechanisms. Curr Opin Chem Biol 2002; 6: 619–629
  • Vetere A, Donati I, Campa C, Semeraro S, Gamini A, Paoletti S. Synthesis and characterization of a novel glycopolymer with protective activity toward human anti-α-Gal antibodies. Glycobiology 2002; 12: 283–290
  • Vic G, Crout DHG. Synthesis of glucosidic derivatives with a spacer arm by reverse hydrolysis using almond β-d-glucosidase. Tetrahedron Asymm 1994; 5: 2513–2516
  • Vic G, Šcigelová M, Hastings JJ, Howarth OW, Crout DHG. 1996a. Glycosidase-catalysed synthesis of oligosaccharides: trisaccharides with the (α-d-Gal-(1→3)-d-Gal terminus responsible for the hyperacute rejection response in cross-species transplant rejection from pigs to man. J Chem Soc Chem Commun 1473–1474.
  • Vic G, Hastings JJ, Crout DHG. Glycosidase-catalysed synthesis of glycosides by an improved procedure for reverse hydrolysis: Application to the chemoenzymatic synthesis of galactopyranosyl-(1→4)-O-α-galactopyranoside derivatives. Tetrahedron Asymm 1996b; 7: 1973–1984
  • Wang Q, Graham RW, Trimbur D, Warren RAJ, Withers SG. Changing enzymatic reaction mechanisms by mutagenesis: conversion of a retaining glucosidase to an inverting enzyme. J Am Chem Soc 1994; 166: 11594–11595
  • Weignerová L, Sedmera P, Huňková Z, Halada P, Křen V, Casali M, Riva S. Enzymatic synthesis of iso-globotriose from partially protected lactose. Tetrahedron Lett 1999; 40: 9297–9299
  • Weignerová L, Huňková Z, Kuzma M, Křen V. Enzymatic synthesis of three pNP-α-galactobiopyranosides: application of the library of fungal α-galactosidases. J Mol Catal B: Enzym 2001; 11: 219–224
  • Williams SJ, Withers SG. Glycosyl fluorides in enzymatic reactions. Carbohydr Res 2000; 327: 27–46
  • Withers SG. Mechanisms of glycosyl transferases and hydrolases. Carbohydr Polym 2001; 44: 325–337
  • Wong TY. Melibiose is hydrolyzed exocellularly by an inducible exo-α-galactosidase in Azotobacter vinelandii. Appl Environ Microbiol 1990; 56: 2271–2273
  • Yamashita A, Hashimoto H, Fujita K, Okada M, Mori S, Kitahata S. Reverse reaction of Aspergillus niger APC-9319 α-galactosidase in a supersaturated substrate solution: production of α-linked galactooligosaccharide α(-GOS). Biosci Biotechnol Biochem 2005; 69: 1381–1388
  • Yip V, Withers SG. Family 4 glycoside hydrolases are special: the first elimination mechanism amongst glycoside hydrolases. Biocatal Biotransform 2006; 24: 167–176
  • Zechel DL, Withers SG. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 2000; 33: 11–18
  • Zechel DL, Withers SG. Dissection of nucleophilic and acid–base catalysis in glycosidases. Curr Opin Chem Biol 2001; 5: 643–649
  • Zhu A, Goldstein J. Cloning and functional expression of a cDNA encoding coffee bean α-galactosidase. Gene 1994; 140: 227–231
  • Zhu A, Monahan C, Zhang Z, Hurst R, Leng L, Goldstein J. High-level expression and purification of coffee bean α-galactosidase produced in yeast Pichia pastoris. Arch Biochem Biophys 1995a; 324: 65–70
  • Zhu A, Wang ZK, Goldstein J. Identification of tyrosine 108 in coffee bean α-galactosidase as an essential residue for the enzyme activity. Biochim Biophys Acta 1995b; 1247: 260–264
  • Zhu A, Wang ZK. Expression and characterization of recombinant α-galactosidase in baculovirus-infect cells. Eur J Biochem 1996; 235: 332–337
  • Zhu A, Leng L, Manahan C, Zhang Z, Hurst R, Lenny L, Goldstein J. Characterization of recombinant α-galactosidase for use in seroconversion from blood group B to O of human erythrocytes. Arch Biochem Biophys 1996a; 327: 324–329
  • Zhu A, Monahan C, Wang ZK. Trp-16 is essential for the activity of α-galactosidase and α-N-acetylgalactosaminidase. Biochim Biophys Acta 1996b; 1297: 99–104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.