323
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Immobilization of Rhizomucor miehei lipase onto montmorillonite K-10 and polyvinyl alcohol gel

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 274-282 | Received 18 Jul 2019, Accepted 29 Nov 2019, Published online: 16 Dec 2019

References

  • Abdul Manan FM, Attan N, Widodo N, Aboul-Enein HY, Wahab RA. 2018. Rhizomucor miehei lipase immobilized on reinforced chitosan-chitin nanowhiskers support for synthesis of eugenyl benzoate. Prep Biochem Biotechnol. 48(1):92–102.
  • Abdul Rahman IN, Abdul Wahab R, Mahat NA, Jamalis J, Huri MAM, Kurniawan C. 2019. Ternary blended chitosan/chitin/Fe3O4 nanosupport for lipase activation and stabilization. Arab J Sci Eng. 44(7):6327–6337.
  • Cai Q, Hu C, Yang N, Wang Q, Wang J, Pan H, Hu Y, Ruan C. 2018. Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose. Int J Biol Macromol. 109:1174–1181.
  • Chen Z, Liu L, Yang R. 2017. Improved performance of immobilized lipase by interfacial activation on Fe3O4@PVBC nanoparticles. RSC Adv. 7(56):35169–35174.
  • de Vasconcellos A, Paula A, Luizon Filho R, Farias L, Gomes E, Aranda D, Nery J. 2012. Synergistic effect in the catalytic activity of lipase Rhizomucor miehei immobilized on zeolites for the production of biodiesel. Microporous Mesoporous Mater. 163:345–355.
  • dos Santos JCS, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. 2015. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem. 7(16):2413–2432.
  • Fernandez-Lopez L, Pedrero SG, Lopez-Carrobles N, Virgen-Ortíz JJ, Gorines BC, Otero C, Fernandez-Lafuente R. 2017. Physical crosslinking of lipase from Rhizomucor miehei immobilized on octyl agarose via coating with ionic polymers: avoiding enzyme release from the support. Process Biochem. 54:81–88.
  • Fomuso LB, Akoh CC. 2002. Lipase-catalyzed acidolysis of olive oil and caprylic acid in a bench-scale packed bed bioreactor. Food Res Int. 35(1):15–21.
  • Ganguly S, Dana K, Mukhopadhyay TK, Parya T, Ghatak S. 2011. Organophilic nano clay: a comprehensive review. Trans Indian Ceram Soc. 70(4):189–206.
  • Gao Z, Chu J, Jiang T, Xu T, Wu B, He B. 2018. Lipase immobilization on functionalized mesoporous TiO2: specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem. 64:152–159.
  • Garcia-Galan C, Berenguer-Murcia A, Fernandez-Lafuente R, Rodrigues RC. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 353(16):2885–2904.
  • Gholamzadeh P, Ziarani GM, Badiei A. 2017. Immobilization of lipases onto the SBA-15 mesoporous silica. Biocatal Biotransform. 35(3):131–150.
  • Gómez de Segura A, Alcalde M, Plou FJ, Remaud-Simeon M, Monsan P, Ballesteros A. 2003. Encapsulation in LentiKats of dextransucrase from Leuconostoc mesenteroides NRRL B-1299, and its effect on product selectivity. Biocatal Biotransform. 21(6):325–331.
  • Gopinath S, Sugunan S. 2007. Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity. Appl Clay Sci. 35(1–2):67–75.
  • Goswami D, Basu J, De S. 2013. Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol. 33(1):81–96.
  • Han Z, Han S, Zheng S, Lin Y. 2009. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Appl Microbiol Biotechnol. 85(1):117–126.
  • Hanefeld U, Gardossi L, Magner E. 2009. Understanding enzyme immobilisation. Chem Soc Rev. 38(2):453–468.
  • Houde A, Kademi A, Leblanc D. 2004. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol. 118(1–3):155–170.
  • Hsu C-H, Tsai S-W. 2017. Lipase-catalysed two-step desymmetrization of 2-methylmalonic dipyrazolide for preparation of optically pure enantiomer in organic solvents. Biocatal Biotransform. 35(6):460–467.
  • Hronská H, Mastihuba V, Tokošová S, Rosenberg M. 2016. Semicontinual synthesis of alkyl galactosides using β-galactosidase entrapped in polyvinylalcohol hydrogel. Biocatal Biotransform. 34(5):219–225.
  • Ilmi M, Kloekhorst A, Winkelman J, Euverink G, Hidayat C, Heeres H. 2017. Process intensification of catalytic liquid–liquid solid processes: continuous biodiesel production using an immobilized lipase in a centrifugal contactor separator. Chem Eng J. 321:76–85.
  • Jesionowski T, Zdarta J, Krajewska B. 2014. Enzyme immobilization by adsorption: a review. Adsorption. 20(5–6):801–821.
  • Jo S, Park S, Oh Y, Hong J, Kim HJ, Kim KJ, Oh KK, Lee SH. 2019. Development of cellulose hydrogel microspheres for lipase immobilization. Biotechnol Bioprocess Eng. 24(1):145–154.
  • Karakuş E, Özler A, Pekyardimci Ş. 2008. Noncovalent immobilization of pectinesterase (Prunus armeniaca L.) onto bentonite. Artif Cells Blood Substit Biotechnol. 36(6):535–550.
  • Lowry O, Rosebrough N, Farr A, Randall R. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1):265–275.
  • Lyu J, Li Z, Men J, Jiang R, Tang G, Zhou Y, Gao R. 2019. Covalent immobilization of Bacillus subtilis lipase A on Fe3O4 nanoparticles by aldehyde tag: an ideal immobilization with minimal chemical modification. Process Biochem. 81:63–69.
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity stability and selectivity via immobilization techniques. Enzyme Microb Technol. 40(6):1451–1463.
  • Mohammadi M, Ashjari M, Dezvarei S, Yousefi M, Babaki M, Mohammadi J. 2015. Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Adv. 5(41):32698–32705.
  • Önal S, Telefoncu A. 2003. Comparison of chitin and amberlite IRA‐938 for α‐galactosidase immobilization. Artif Cells Blood Substit Biotechnol. 31(1):19–33.
  • Öztürk H, Pollet E, Phalip V, Güvenilir Y, Avérous L. 2016. Nanoclays for lipase immobilization: biocatalyst characterization and activity in polyester synthesis. Polymer. 8(12):416.
  • Pitzalis F, Carucci C, Naseri M, Fotouhi L, Magner E, Salis A. 2018. Lipase encapsulation onto ZIF‐8: a comparison between biocatalysts obtained at low and high zinc/2‐methylimidazole molar ratio in aqueous medium. ChemCatChem. 10(7):1578–1585.
  • Rahman INA, Attan N, Mahat NA, Jamalis J, Abdul Keyon AS, Kurniawan C, Wahab RA. 2018. Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin. Int J Biol Macromol. 115:680–695.
  • Rajasekar V, Tambe A, Datla A. 2013. Immobilization and characterization of recombinant Candida antarctica lipase B on poly(glycidyl methacrylate-ter-divinyl benzene-ter-ethylene dimethacrlylate) beads, “DILBEADS™TA”. Biocatal Biotransform. 31(2):79–88.
  • Rebroš M, Pilniková A, ŠImčíková D, Weignerová L, Stloukal R, Křen V, Rosenberg M. 2013. Recombinant α-l-rhamnosidase of Aspergillus terreus immobilization in polyvinylalcohol hydrogel and its application in rutin derhamnosylation. Biocatal Biotransform. 31(6):329–334.
  • Rezaei K, Temelli F. 2000. Lipase‐catalyzed hydrolysis of canola oil in supercritical carbon dioxide. J Am Oil Chem Soc. 77(8):903–909.
  • Rodrigues RC, Fernandez-Lafuente R. 2010. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B: Enzym. 64(1–2):1–22.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R. 2013. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 42(15):6290–6307.
  • Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. 2019. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv. 37(5):746–770.
  • Sadana A, Henley AP. 1987. Single-step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol Bioeng. 30(6):717–723.
  • Sanjay G, Sugunan S. 2008. Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes. J Porous Mater. 15(3):359–367.
  • Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. 2018. Recent advances on sources and industrial applications of lipases. Biotechnol Progress. 34(1):5–28.
  • Seleci M, Ag D, Yalcinkaya E, Demirkol D, Guler C, Timur S. 2012. Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications. RSC Adv. 2(5):2112–2118.
  • Takó M, Kotogán A, Papp T, Kadaikunnan S, Alharbi N, Vágvölgyi C. 2017. Purification and properties of extracellular lipases with transesterification activity and 1,3-regioselectivity from Rhizomucor miehei and Rhizopus oryzae. J Microbiol Biotechnol. 27:277–288.
  • Tiago L, Rueda N, dos Santos J, Barbosa O, Ortiz C, Binay B, Ozdemir E, Fernandez-Lafuente R. 2016. Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochem. 51:865–874.
  • Ulker C, Gokalp N, Guvenilir Y. 2016. Immobilization of Candida antarctica lipase B (CALB) on surface-modified rice husk ashes (RHA) via physical adsorption and cross-linking methods. Biocatal Biotransform. 34(4):172–180.
  • Wang X, Wang X, Cong F, Xu Y, Kang J, Zhang Y, Zhou M, Xing K, Zhang G, Pan H. 2018. Synthesis of cinnamyl acetate catalysed by highly reusable cotton-immobilized Pseudomonas fluorescens lipase. Biocatal Biotransform. 36(4):332–339.
  • Wu X, Jääskeläinen S, Linko W. 1996. Purification and partial characterization of Rhizomucor miehei lipase for ester synthesis. Appl Biochem Biotechnol. 59(2):145–158.
  • Yildirim D, Baran E, Ates S, Yazici B, Tukel S. 2019. Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters. Biocatal Biotransform. 37(3):210–223.
  • Yildirim D, Tükel SS. 2013. Immobilized Pseudomonas sp. lipase: a powerful biocatalyst for asymmetric acylation of (±)-2-amino-1-phenylethanols with vinyl acetate. Process Biochem. 48(5–6):819–830.
  • Yildirim D, Tükel SS. 2014. Asymmetric ammonolysis of (R/S)-mandelic acid by immobilized lipases via direct amidation of mandelic acid in biphasic media. Biocatal Biotransform. 32:251–258.
  • Yücel Y, Demir C, Dizge N, Keskinler B. 2014. Methods for lipase immobilization and their use for biodiesel production from vegetable oil. Energy Sources A. 36(11):1203–1211.
  • Zaak H, Siar E-H, Kornecki JF, Fernandez-Lopez L, Pedrero SG, Virgen-Ortíz JJ, Fernandez-Lafuente R. 2017. Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochem. 56:117–123.
  • Zhong N, Chen W, Liu L, Chen H. 2019. Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: their enzymatic properties and glycerolysis efficiencies for diacylglycerols production. Food Chem. 271:739–746.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.