118
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and substrate-controlled modification of β-aminocarbonyl using α-amylase enzyme and Pd-catalyst in one-pot

&
Pages 262-272 | Received 02 Jun 2022, Accepted 18 Dec 2022, Published online: 22 Mar 2023

References

  • Abedini-Torghabeh J, Eshghi H, Bakavoli M, Rahimizadeh M. 2015. PPh3-catalyzed Mannich reaction: a facile one-pot synthesis of β-amino carbonyl compounds under solvent-free conditions at room temperature. Res Chem Intermed. 41(6):3649–3658.
  • Achary LSK, Nayak PS, Barik B, Kumar A, Dash P. 2020. Ultrasonic-assisted green synthesis of β-amino carbonyl compounds by copper oxide nanoparticles decorated phosphate functionalized graphene oxide via Mannich reaction. Catal Today. 348:137–147.
  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A. 2006. Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol. 24(6):281–287.
  • Allen LA, Raclea RC, Natho P, Parsons PJ. 2021. Recent advances in the synthesis of α-amino ketones. Org Biomol Chem. 19(3):498–513.
  • Amara Z, Drège E, Troufflard C, Retailleau P, Joseph D. 2012. Solvent-free double aza-Michael under ultrasound irradiation: diastereoselective sequential one-pot synthesis of pyrrolidine Lobelia alkaloids analogues. Org Biomol Chem. 10(35):7148.
  • Azizi N, Baghi R, Ghafuri H, Bolourtchian M, Hashemi M. 2010. Silicon tetrachloride catalyzed Aza-Michael addition of amines to conjugated alkenes under solvent-free conditions. Synlett. 2010(03):379–382.
  • Azizi N, Saidi MR. 2004. LiClO4 accelerated Michael addition of amines to α,β-unsaturated olefins under solvent-free conditions. Tetrahedron. 60(2):383–387.
  • Baydaş Y, Dertli E, Şahin E. 2020. Green synthesis of chiral aromatic alcohols with Lactobacillus kefiri P2 as a novel biocatalyst. Synth Commun. 50(7):1035–1045.
  • Behera S, Patra BN. 2021. One-pot synthesis of β-amino carbonyl compounds under solvent free condition by using alum doped nanopolyaniline catalyst. Polymer. 228:123851.
  • Bhattacharjee S, Shaikh AA, Ahn WS. 2021. Heterogeneous Aza-Michael addition reaction by the copper-based metal–organic framework (CuBTC). Catal Lett. 151(7):2011–2018.
  • Biçer A, Kaya R, Yakalı G, Gültekin MS, Cin GT, Gülçin I. 2020. Synthesis of novel β-amino carbonyl derivatives and their inhibition effects on some metabolic enzymes. J Mol Struct. 1204:127453.
  • Bora PP, Bihani M, Bez G. 2013. Multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles catalyzed by lipase from Aspergillus niger. J Mol Catal B Enzym. 92:24–33.
  • Budhiraja M, Kondabala R, Ali A, Tyagi V. 2020. First biocatalytic Groebke-Blackburn-Bienaymé reaction to synthesize imidazo[1,2-a]pyridine derivatives using lipase enzyme. Tetrahedron. 76(47):131643.
  • Burns M, Bi W, Kim H, Lall MS, Li C, O’Neill BT, OrgP. 2021. Ketoreductase/transaminase, one-pot, multikilogram biocatalytic cascade reaction. Org Process Res Dev. 25(4):941–946.
  • Citoler J, Harawa V, Marshall JR, Bevinakatti H, Finnigan JD, Charnock SJ, Turner NJ. 2021. Synthesis of pharmaceutically relevant 2‐aminotetralin and 3‐aminochroman derivatives via enzymatic reductive amination. Angew Chem Int Ed. 60(46):24456–24460.
  • Çolak NS, Kalay E, Şahin E. 2021. Asymmetric reduction of prochiral aromatic and hetero aromatic ketones using whole-cell of Lactobacillus senmaizukei biocatalyst. Synth Commun. 51(15):2305–2315.
  • Colantoni D, Fioravanti S, Pellacani L, Tardella PA. 2004. Aza-Michael addition of nosyloxycarbamates to 2-(trifluoromethyl)acrylates. Org Lett. 6(2):197–200.
  • Correia Cordeiro RS, Ríos‐Lombardía N, Morís F, Kourist R, González‐Sabín J. 2019. One-pot transformation of ketoximes into optically active alcohols and amines by sequential action of laccases and ketoreductases or ω-transaminases. ChemCatChem. 11(4):1272–1277.
  • Cortes-Clerget M, Akporji N, Zhou J, Gao F, Guo P, Parmentier M, Gallou F, Berthon JY, Lipshutz BH. 2019. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis. Nat Commun. 10(1):2169.
  • Cosgrove SC, Thompson MP, Ahmed ST, Parmeggiani F, Turner NJ. 2020. One‐pot synthesis of chiral N‐arylamines by combining biocatalytic aminations with Buchwald–Hartwig N‐arylation. Angew Chem Int Ed. 59(41):18156–18160.
  • Dander JE, Giroud M, Racine S, Darzi ER, Alvizo O, Entwistle D, Garg NK. 2019. Chemoenzymatic conversion of amides to enantioenriched alcohols in aqueous medium. Commun Chem. 2(1):10.
  • Dang TT, Seayad AM. 2016. A convenient ruthenium-catalysed α-methylation of carbonyl compounds using methanol. Adv Synth Catal. 358(21):3373–3380.
  • Das P, Devi N, Puzari A. 2022. One-pot solvent-free microwave-assisted Aza-Michael addition reaction of acrylonitrile. J Indian Chem Soc. 99(5):100411.
  • Dawood AW, Bassut J, de Souza RO, Bornscheuer UT. 2018. Combination of the Suzuki-Miyaura cross-coupling reaction with engineered transaminases. Chem Eur J. 24(60):16009–16013.
  • de Andrade BC, Gennari A, Renard G, Benvenutti EV, Chies JM, Volpato G, Volken de Souza CF. 2022. Nickel-functionalized Chitosan for the oriented immobilization of histidine-tagged enzymes: A promising support for food bioprocess applications. Catal Lett. 152:2956–2970.
  • Denard CA, Hartwig JF, Zhao H. 2013. Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catal. 3(12):2856–2864.
  • Dutt S, Goel V, Garg N, Choudhury D, Mallick D, Tyagi V. 2020. Biocatalytic Aza‐Michael addition of aromatic amines to enone using α‐amylase in water. Adv Synth Catal. 362(4):858–866.
  • Dutt S, Tyagi V. 2021. Biocatalytic synthesis of quinoline derivatives via α-amylase catalysed one-pot domino Aza-Michael/Aldol/aromatization reactions. Tetrahedron Lett. 87:153527.
  • Foley KF, DeSanty KP, Kast RE. 2006. Bupropion: pharmacology and therapeutic applications. Expert Rev Neurother. 6(9):1249–1265.
  • Fonseca TDS, Lima LD, de Oliveira MDC, de Lemos TL, Zampieri D, Molinari F, de Mattos MC. 2018. Chemoenzymatic synthesis of luliconazole mediated by lipases. Eur J Org Chem. 2018(18):2110–2116.
  • Gayatri SN, Biju VMN, Starvin AM. 2019. Determination of ondansetron by spectrofluorimetry: application to forced degradation study, pharmaceuticals and human plasma. J Fluoresc. 29(1):203–209.
  • Gennari A, Mobayed FH, Volpato G, Souza CFV. 2018. Chelation by collagen in the immobilization of Aspergillus oryzae β-galactosidase: a potential biocatalyst to hydrolyze lactose by batch processes. Int J Biol Macromol. 109:303–310.
  • Ghafuri H, Ghorbani B, Rashidizadeh A, Talebi M, Oshani RM. 2018. Fe 3 O 4 @ZrO 2 /SO 42‐ : a recyclable magnetic heterogeneous nanocatalyst for synthesis of β‐amino carbonyl derivatives and synthesis of benzylamino coumarin derivatives through Mannich reaction. Appl Organometal Chem. 32(3):e4147.
  • Grabner B, Schweiger AK, Gavric K, Kourist R, Gruber-Woelfler H. 2020. A chemo-enzymatic tandem reaction in a mixture of deep eutectic solvent and water in continuous flow. React Chem Eng. 5(2):263–269.
  • He YH, He T, Guo JT, Li R, Xiang Y, Yang DC, Guan Z. 2016. Enzyme-catalyzed domino reaction: efficient construction of spirocyclic oxindole skeleton using porcine pepsin. Catal Sci Technol. 6(7):2239–2248.
  • Heckmann CM, Paradisi F. 2020. Looking back: a short history of the discovery of enzymes and how they became powerful chemical tools. ChemCatChem. 12(24):6082–6102.
  • Huang X, Cao M, Zhao H. 2020. Integrating biocatalysis with chemocatalysis for selective transformations. Curr Opin Chem Biol. 55:161–170.
  • Huisman GW, Collier SJ. 2013. On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol. 17(2):284–292.
  • Jung JH, Yoon DH, Kang P, Lee WK, Eum H, Ha HJ. 2013. CAL-B catalyzed desymmetrization of 3-alkylglutarate: “olefin effect” and asymmetric synthesis of pregabalin. Org Biomol Chem. 11(22):3635.
  • Kang Q, Zhang Y. 2011. N-Heterocyclic carbene-catalyzed Aza-Michael addition. Org Biomol Chem. 9(19):6715.
  • Kang S, Park S, Kim KS, Song C, Lee Y. 2018. Copper-catalyzed Aza-Michael addition of 2-aminobenzoate to β-substituted α,β-unsaturated ketones: one-pot synthesis of 3-carbonyl-2-substituted quinolin-4(1 H)-ones. J Org Chem. 83(5):2694–2705.
  • Kaur B, Kumar H. 2020. Ultrasound-promoted one-pot three-component synthesis of β–amino carbonyl compounds using manganese perchlorate. Org Prep Proced Int. 52(5):474–477.
  • Kim S, Kang G, Kim Y, Lee Y. 2016. Copper-catalyzed Aza-Michael addition of aromatic amines or aromatic Aza-heterocycles to α,β-unsaturated olefins. J Org Chem. 81(10):4048–4057.
  • Kinnell A, Harman T, Bingham M, Berry A, Nelson A. 2012. Development of an organo- and enzyme-catalysed one-pot, sequential three-component reaction. Tetrahedron. 68(37):7719–7722.
  • Krause N, Hoffmann-Röder A. 2001. Recent advances in catalytic enantioselective Michael additions. Synthesis. 2001(2):171–196.
  • Leutbecher H, Hajdok S, Braunberger C, Neumann M, Mika S, Conrad J, Beifuss U. 2009. Combined action of enzymes: the first domino reaction catalyzed by Agaricus bisporus. Green Chem. 11(5):676.
  • Li K, He T, Li C, Feng XW, Wang N, Yu XQ. 2009. Lipase-catalysed direct Mannich reaction in water: utilization of biocatalytic promiscuity for C–C bond formation in a “one-pot” synthesis. Green Chem. 11(6):777.
  • List B, Pojarliev P, Biller WT, Martin HJ. 2002. The proline-catalyzed direct asymmetric three-component Mannich reaction: scope, optimization, and application to the highly enantioselective synthesis of 1,2-amino alcohols. J Am Chem Soc. 124(5):827–833.
  • Liu X, Yang J, Gao L, Zhang L, Lei X. 2020. Chemoenzymatic total syntheses of artonin I with an intermolecular diels–alderase. Biotechnol J. 15(11):2000119.
  • Lombard V, Golaconda HR, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl Acids Res. 42(D1):D490–D495.
  • Lu X, Deng L. 2008. Asymmetric Aza-Michael reactions of α,β-unsaturated ketones with bifunctional organic catalysts. Angew Chem. 120(40):7824–7827.
  • Luan P, Liu Y, Li Y, Chen R, Huang C, Gao J, Hollmann F, Jiang Y. 2021. Aqueous chemoenzymatic one-pot enantioselective synthesis of tertiary α-aryl cycloketones via Pd-catalyzed C–C formation and enzymatic C–C asymmetric hydrogenation. Green Chem. 23(5):1960–1964.
  • Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA. 2010. A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem. 12(1):81–86.
  • Maaskant RV, Chordia S, Roelfes G. 2021. Merging whole‐cell biosynthesis of styrene and transition‐metal catalyzed derivatization reactions. ChemCatChem. 13(6):1607–1613.
  • Maleki A, Firouzi-Haji R. 2019. Green synthesis of aminocarbonyl compounds using a nanostructured heterogeneous catalyst under mild reaction conditions. Inorg Nano-Met Chem. 49(5):132–135.
  • Manning J, Tavanti M, Porter JL, Kress N, De Visser SP, Turner NJ, Flitsch SL. 2019. Regio‐ and enantio‐selective chemo‐enzymatic C − H‐lactonization of decanoic acid to (S)‐δ‐decalactone. Angew Chem Int Ed. 58(17):5668–5671.
  • Meng J, Chang F, Su Y, Liu R, Cheng T, Liu G. 2019. Switchable catalysts used to control Suzuki cross-coupling and Aza–Michael addition/asymmetric transfer hydrogenation cascade reactions. ACS Catal. 9(9):8693–8701.
  • Modukuru NK, Sukumaran J, Collier SJ, Chan AS, Gohel A, Huisman GW, Keledjian R, Narayanaswamy K, Novick SJ, Palanivel SM, et al. 2014. Development of a practical, biocatalytic reduction for the manufacture of (S)-licarbazepine using an evolved ketoreductase. Org Process Res Dev. 18(6):810–815.
  • Mukherjee H, Martinez CA. 2011. Biocatalytic route to chiral precursors of β-substituted-γ-amino acids. ACS Catal. 1(9):1010–1013.
  • Paramparambath S, Selvam S, Puthukkudy G, Satheesh A, Kandasamy E. 2020. An efficient strategy to synthesis of β-carbonyl compounds by 1-pentyl-1,2,4-triazolium methanesulfonate. Mater Today Proc. 33:2144–2147.
  • Parmeggiani F, Rué Casamajo A, Walton CJW, Galman JL, Turner NJ, Chica RA. 2019. One-pot biocatalytic synthesis of substituted d-tryptophans from indoles enabled by an engineered aminotransferase. ACS Catal. 9(4):3482–3486.
  • Patel RN. 2011. Biocatalysis: synthesis of key intermediates for development of pharmaceuticals. ACS Catal. 1(9):1056–1074.
  • Polshettiwar V, Varma RS. 2010. Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, Aza-Michael addition, and pyrazole synthesis. Tetrahedron. 66(5):1091–1097.
  • Prabhakara M, Maiti B. 2020. Ionic liquid-immobilized proline(s) organocatalyst-catalyzed one-pot multi-component Mannich reaction under solvent-free condition. Res Chem Intermed. 46(4):2381–2401.
  • Rahmatpour A, Eeimen R, Goodarzi N. 2019. Titanium tetrachloride incorporated crosslinked polystyrene copolymer as an efficient and recyclable polymeric Lewis acid catalyst for the synthesis of Β-amino carbonyl compounds at room temperature. Synth Commun. 49:2915–2930.
  • Ran N, Zhao L, Chen Z, Tao J. 2008. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem. 10(4):361–372.
  • Reetz MT. 2016. What are the limitations of enzymes in synthetic organic chemistry? Chem Rec. 16(6):2449–2459.
  • Ríos-Lombardía N, Rodríguez-Álvarez MJ, Morís F, Kourist R, Comino N, López-Gallego F, González-Sabín J, García-Álvarez J. 2020. DESign of sustainable one-pot chemoenzymatic organic transformations in deep eutectic solvents for the synthesis of 1,2-disubstituted aromatic olefins. Front Chem. 8:139.
  • Rosenthal K, Lütz S. 2018. Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Curr Opin Green Sustain Chem. 11:58–64.
  • Salvi NA, Chattopadhyay S. 2016. Laboratory scale-up synthesis of chiral carbinols using Rhizopus arrhizus. Tetrahedron Asymmetry. 27(4-5):188–192.
  • Schmidt S, Castiglione K, Kourist R. 2018. Overcoming the incompatibility challenge in chemoenzymatic and multi-catalytic cascade reactions. Chem Eur J. 24(8):1755–1768.
  • Sheldon RA, Brady D. 2021. Streamlining design, engineering, and applications of enzymes for sustainable biocatalysis. ACS Sustain Chem Eng. 9(24):8032–8052.
  • Singh R, Kumar M, Mittal A, Mehta PK. 2016. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech. 6(1):3.
  • Song YX, Du DM. 2021. Recent advances in catalytic asymmetric Aza‐Michael addition triggered cascade reactions. Adv Synth Catal. 363(20):4667–4694.
  • Szelwicka A, Zawadzki P, Sitko M, Boncel S, Czardybon W, Chrobok A. 2019. Continuous flow chemo-enzymatic Baeyer–Villiger oxidation with superactive and extra-stable enzyme/carbon nanotube catalyst: an efficient upgrade from batch to flow. Org Process Res Dev. 23(7):1386–1395.
  • Tiwari DK, Phanindrudu M, Wakade SB, Nanubolu JB, Tiwari DK. 2017. α,β-Functionalization of saturated ketones with anthranils via Cu-catalyzed sequential dehydrogenation/Aza-Michael addition/annulation cascade reactions in one-pot. Chem Commun. 53(38):5302–5305.
  • Verma S, Mungse HP, Kumar N, Choudhary S, Jain SL, Sain B, Khatri OP. 2011. Graphene oxide: an efficient and reusable carbocatalyst for Aza-Michael addition of amines to activated alkenes. Chem Commun. 47(47):12673–12675.
  • Vicario JL, Badia D, Carrillo L. 2007. Organocatalytic enantioselective Michael and hetero-Michael reactions. Synthesis. 2007(14):2065–2092.
  • Wang J, Li P, Choy PY, Chan AS, Kwong FY. 2012. Advances and applications in organocatalytic asymmetric Aza-Michael addition. ChemCatChem. 4(7):917–925.
  • Wang Y, Du DM. 2020. Recent advances in organocatalytic asymmetric Oxa-Michael addition triggered cascade reactions. Org Chem Front. 7(20):3266–3283.
  • Wang Y, Ren H, Zhao H. 2018. Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production. Crit Rev Biochem Mol Biol. 53(2):115–129.
  • Xia F, Shi Q, Nan Z. 2021. Improvement of peroxidase-like activity and application for detection of H2O2 and dopamine for SDBS-Cu-CuFe2O4. Surf Interfaces. 24:101109.
  • Xiang Y, Song J, Zhang Y, Yang DC, Guan Z, He YH. 2016. Enzyme-catalyzed asymmetric domino thia-Michael/aldol condensation using pepsin. J Org Chem. 81(14):6042–6048.
  • Xie ZB, Sun DZ, Jiang GF, Le ZG. 2014. Facile synthesis of bis(indolyl)methanes catalyzed by α-chymotrypsin. Molecules. 19(12):19665–19677.
  • Xu F, Chen S, Xu G, Wu J, Yang L. 2015. Discovery and expression of a Pseudomonas sp. esterase as a novel biocatalyst for the efficient biosynthesis of a chiral intermediate of pregabalin. Biotechnol Bioproc E. 20(3):473–487.
  • You S-L, Feng Z, Xu Q-L, Dai L-X. 2010. Enantioselective synthesis of 2-aryl-2,3-dihydro-4-quinolones by chiral brønsted acid catalyzed intramolecular Aza-Michael addition reaction. Heterocycles. 80(2):765.
  • Younes SH, Tieves F, Lan D, Wang Y, Süss P, Brundiek H, Wever R, Hollmann F. 2020. Chemoenzymatic halocyclization of γ,δ‐unsaturated carboxylic acids and alcohols. ChemSusChem. 13(1):97–101.
  • Zhang XW, Zhang H, Wang HC, Zhu MH, Cong H, Liu WB. 2020. Pd-catalyzed arylation/aza-Michael addition cascade to C2-spiroindolines and azabicyclo[3.2.2]nonanones. Chem Commun. 56(80):12013–12016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.