44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Functionalized magnetic nanoparticles for Cellic Ctec2 cellulase immobilization: Allowing reusability of enzyme in the conversion of cellulosic biomass

&
Received 29 Sep 2023, Accepted 15 Mar 2024, Published online: 26 Mar 2024

References

  • Abdulaal WH, Almulaiky YQ, El-Shishtawy RM. 2020. Encapsulation of HRP enzyme onto a magnetic Fe3O4 Np–PMMA film via casting with sustainable biocatalytic activity. Catalysts. 10(2):181. doi: 10.3390/catal10020181.
  • Abraham RE, Verma ML, Barrow CJ, Puri M. 2014. Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels. 7(1):90. doi: 10.1186/1754-6834-7-90.
  • Almulaiky YQ, Al-Harbi SA. 2019. A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material. Int J Biol Macromol. 133:767–774. doi: 10.1016/j.ijbiomac.2019.04.119.
  • Asar MF, Ahmad N, Husain Q. 2020. Chitosan modified Fe3O4/graphene oxide nanocomposite as a support for high yield and stable immobilization of cellulase: its application in the saccharification of microcrystalline cellulose. Prep Biochem Biotechnol. 50(5):460–467. doi: 10.1080/10826068.2019.1706562.
  • Bilal M, Ashraf SS, Ferreira LFR, Cui J, Lou W-Y, Franco M, Iqbal HMN. 2020. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. Int J Biol Macromol. 162:1906–1923. doi: 10.1016/j.ijbiomac.2020.08.122.
  • Brady D, Jordaan J. 2009. Advances in enzyme immobilization. Biotechnol Lett. 31(11):1639–1650. doi: 10.1007/s10529-009-0076-4.
  • Cheng G, Xing J, Pi Z, Liu S, Liu Z, Song F. 2019. α-Glucosidase immobilization on functionalized Fe3O4 magnetic nanoparticles for screening of enzyme inhibitors. Chin Chem Lett. 30(3):656–659. doi: 10.1016/j.cclet.2018.12.003.
  • Cherian E, Dharmendirakumar M, Baskar G. 2015. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin J Catal. 36(8):1223–1229. doi: 10.1016/S1872-2067(15)60906-8.
  • Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. Biotech. 3(1):1–9. doi: 10.1007/s13205-012-0071-7.
  • Del Arco J, Alcántara AR, Fernández-Lafuente R, Fernández-Lucas J. 2020. Comprehensive biotechnology. Bioresour Technol. 2(11):2–13.
  • Deshmukh AR, Gupta A, Kim BS. 2019. Ultrasound assisted green synthesis of silver and iron oxide nanoparticles using fenugreek seed extract and their enhanced antibacterial and antioxidant activities. Biomed Res Int. 2019:1714358. doi: 10.1155/2019/1714358.
  • El-Khawaga AM, Farrag AA, Elsayed MA, El-Sayyad GS, El-Batal AI. 2021. Antimicrobial and photocatalytic degradation activities of chitosan-coated magnetite nanocomposite. J Clust Sci. 32(5):1107–1119. doi: 10.1007/s10876-020-01869-6.
  • El-Shishtawy RM, Ahmed NSE, Almulaiky YQ. 2021. Immobilization of catalase on chitosan/ZnO and chitosan/ZnO/Fe2O3 nanocomposites: a comparative study. Catalysts. 11(7):820. doi: 10.3390/catal11070820.
  • Fang G, Chen H, Zhang Y, Chen A. 2016. Immobilization of pectinase onto Fe3O4@ SiO2–NH2 and its activity and stability. Int J Biol Macromol. 88:189–195. doi: 10.1016/j.ijbiomac.2016.03.059.
  • Ghose TK. 1987. Measurement of cellulose activities. Pure Appl Chem. 59(2):257–268. doi: 10.1351/pac198759020257.
  • Gokhale AA, Lu J, Lee I. 2013. Immobilization of cellulase on magnetoresponsive graphene nano-supports. J Mol Catal B Enzym. 90:76–86. doi: 10.1016/j.molcatb.2013.01.025.
  • Husain Q. 2017. Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis. 3(1):37–53. doi: 10.1515/boca-2017-0004.
  • Jiang DS, Long SY, Huang J, Xiao HY, Zhou JY. 2005. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem Eng J. 25(1):15–23. doi: 10.1016/j.bej.2005.03.007.
  • John JA, Samuel MS, Selvarajan E. 2023. Immobilized cellulase on Fe3O4/GO/CS nanocomposite as a magnetically recyclable catalyst for biofuel application. Fuel. 333:126364. doi: 10.1016/j.fuel.2022.126364.
  • Jordan J, Kumar C, Theegala C. 2011. Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym. 68(2):139–146. doi: 10.1016/j.molcatb.2010.09.010.
  • Khan RS, Rather AH, Wani TU, Rather SU, Amna T, Hassan MS, Sheikh FA. 2023. Recent trends using natural polymeric nano fibres as supports for enzyme immobilization and catalysis. Biotechnol Bioeng. 120(1):22–40. doi: 10.1002/bit.28246.
  • Khawaja H, Zahir E, Asghar MA, Rafique K, Asghar MA. 2021. Synthesis and application of covalently grafted magnetic graphene oxide carboxymethyl cellulose nanocomposite for the removal of atrazine from an aqueous phase. J Macromol Sci B. 60(12):1025–1044. doi: 10.1080/00222348.2021.1949515.
  • Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M. 2001. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater. 225(1–2):30–36. doi: 10.1016/s0304-8853(00)01224-5.
  • Kneller EF, Luborsky FE. 1963. Particle size dependence of coercivity and remanence of single-domain particles. J Appl Phys. 34(3):656–658. doi: 10.1063/1.1729324.
  • Kuo CH, Liu YC, Chang CM, Chen JH, Chang C, Shieh CJ. 2012. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym. 87(4):2538–2545. doi: 10.1016/j.carbpol.2011.11.026.
  • Lee YC, Chen CT, Chiu YT, Wu KC-W. 2013. An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem. 5(8):2153–2157. doi: 10.1002/cctc.201300219.
  • Li X, Li L, Si J, Li T, Xu Z, Jiang Y, Hu X, Yang H. 2023. Dihydroflavonol 4-reductase immobilized on Fe3O4–chitosan nanoparticles as a nano-biocatalyst for synthesis of anthocyanidins. Chem Phys Lett. 815:140353. doi: 10.1016/j.cplett.2023.140353.
  • Lin Y, Liu X, Xing Z, Geng Y, Wilson J, Wu D, Kong H. 2017. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose. 24(12):5541–5550. doi: 10.1007/s10570-017-1520-6.
  • Mao X, Guo G, Huang J, Du Z, Huang Z, Ma L, Li P, Gu L. 2006. A novel method to prepare chitosan powder and its application in cellulase immobilization. J Chem Tech Biotech. 81(2):189–195. doi: 10.1002/jctb.1378.
  • Mohamed SA, Al-Harbi MH, Almulaiky YQ, Ibrahim IH, El-Shishtawy RM. 2017. Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol. 27:84–90. doi: 10.1016/j.ejbt.2017.03.010.
  • Podrepšek GH, Knez Z, Leitge M. 2020. Development of chitosan functionalized magnetic nanoparticles with bioactive compounds. Nanomaterials. 10(10):1913. doi: 10.3390/nano10101913.
  • Polizzi KM, Bommarius AS, Broering JM, Chaparro Riggers JF. 2007. Stability of biocatalysts. Curr Opin Chem Biol. 11(2):220–225. doi: 10.1016/j.cbpa.2007.01.685.
  • Rajnish KN, Samuel MS, John J A, Datta S, Chandrasekar N, Balaji R, Jose S, Selvarajan E. 2021. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production—a narrative review. Int J Biol Macromol. 182:1793–1802. doi: 10.1016/j.ijbiomac.2021.05.176.
  • Reddy LH, Arias JL, Nicolas J, Couvreur P. 2012. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 112(11):5818–5878. doi: 10.1021/cr300068p.
  • Safari J, Javadian L. 2014. Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv. 4(90):48973–48979. doi: 10.1039/C4RA06618A.
  • Salah El-Din TA, Elzatahry AA, Aldhayan DM, Al-Enizi AM, AlDeyab SS. 2011. Synthesis and characterization of magnetite zeolite nanocomposite. Int J Electrochem Sci. 66:177–183.
  • Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, Ramos-González R, Aguilar CN, Ilyina A. 2016. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng. 40(1):9–22. doi: 10.1007/s00449-016-1670-1.
  • Shanmugam S, Krishnaswamy S, Chandrababu R, Veerabagu U, Pugazhendhi A, Mathimani T. 2020. Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass. Fuel. 273:117777. doi: 10.1016/j.fuel.2020.117777.
  • Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 83(1):1–11. doi: 10.1016/s0960-8524(01)00212-7.
  • Talekar S, Pandharbale A, Ladole M, Nadar S, Mulla M, Japhalekar K, Pattankude K, Arage D. 2013. Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol. 147:269–275. doi: 10.1016/j.biortech.2013.08.035.
  • Taqieddin E, Amiji M. 2004. Enzyme immobilization in novel alginate–chitosan core–shell microcapsules. Biomaterials. 25(10):1937–1945. doi: 10.1016/j.biombioe.2014.03.009.
  • Ungurean M, Paul C, Peter F. 2013. Cellulase immobilized by sol-gel entrapment for efficient hydrolysis of cellulose. Bioprocess Biosyst Eng. 36(10):1327–1338. doi: 10.1007/s00449-012-0835-9.
  • Verma ML, Barrow CJ, Puri M. 2013. Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilization with potential applications in biodiesel production. Appl Microbiol Biotechnol. 97(1):23–39. doi: 10.1007/s00253-012-4535-9.
  • Xie WL, Wang JL. 2012. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenergy. 36:373–380. doi: 10.1016/j.biombioe.2011.11.006.
  • Xu D, Hein S, Loo SL, Wang K. 2008. The fixed-bed study of dye removal on chitosan beads at high pH. Ind Eng Chem Res. 47(22):8796–8800. doi: 10.1021/ie800387z.
  • Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y. 2014. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res. 53(9):3448–3454. doi: 10.1021/ie404072s.
  • Zhang K, Yang K, Liu Y, Zhang K, Chen Y, Yin X. 2020. Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct. 1220:128769. doi: 10.1016/jmolstruc.2020.128769.
  • Zhang S, Wu D, Li H, Zhu J, Hu W, Lu M, Liu X. 2017. Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC–MS/MS. Food Funct. 8(9):3219–3227. doi: 10.1039/c7fo00928c.
  • Zhang W, Lin Y, Zhang Q, Wang X, Wu D, Kong H. 2013. Optimisation of simultaneous saccharification and fermentation of NaOH-pretreated wheat straw for ethanol production. Fuel. 112:331–337. doi: 10.1016/j.fuel.2013.05064.
  • Zhang W, Qiu J, Zang L, Sakai E, Feng H. 2015. Preparation of functionalized magnetic silica nanospheres for the cellulase immobilization. Nano. 10(01):1550013. doi: 10.1142/S1793292015500137.
  • Zhao DL, Wang XX, Zeng XW, Xia QS, Tang JT. 2009. Preparation and inductive heating property of Fe3O4−chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. J Alloys Compd. 477(1–2):739–743. doi: 10.1016/j.jallcom.2008.10.104.
  • Zhong L, Jiao X, Hu H, Shen X, Zhao J, Feng Y, Li C, Du Y, Cui J, Jia S. 2021. Activated magnetic lipase–inorganic hybrid nanoflowers: a highly active and recyclable nano biocatalyst for biodiesel production. Renew Energy. 171:825–832. doi: 10.1016/j.renene.2021.02.155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.