Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 27, 2024 - Issue 1
654
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Developmental and adult stress: effects of steroids and neurosteroids

&
Article: 2317856 | Received 03 Jul 2023, Accepted 03 Feb 2024, Published online: 02 Apr 2024

References

  • Abbink, M. R., Kotah, J. M., Hoeijmakers, L., Mak, A., Yvon-Durocher, G., van der Gaag, B., Lucassen, P. J., & Korosi, A. (2020). Characterization of astrocytes throughout life in wildtype and APP/PS1 mice after early-life stress exposure. Journal of Neuroinflammation, 17(1), 1. https://doi.org/10.1186/s12974-020-01762-z
  • Agis-Balboa, R. C., Guidotti, A., & Pinna, G. (2014). 5α-reductase type I expression is downregulated in the prefrontal cortex/Brodmann’s area 9 (BA9) of depressed patients. Psychopharmacology, 231(17), 3569–18. https://doi.org/10.1007/s00213-014-3567-5
  • Agís-Balboa, R. C., Pinna, G., Zhubi, A., Maloku, E., Veldic, M., Costa, E., & Guidotti, A. (2006). Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proceedings of the National Academy of Sciences, 103(39), 14602–14607. https://doi.org/10.1073/pnas.0606544103
  • Alaiyed, S., McCann, M., Mahajan, G., Rajkowska, G., Stockmeier, C. A., Kellar, K. J., Wu, J. Y., & Conant, K. (2020). Venlafaxine stimulates an MMP-9-dependent increase in excitatory/inhibitory balance in a stress model of depression. The Journal of Neuroscience., 40(22), 4418–4431. https://doi.org/10.1523/JNEUROSCI.2387-19.2020
  • Altshuler, L. L., Abulseoud, O. A., Foland-Ross, L., Bartzokis, G., Chang, S., Mintz, J., Hellemann, G., & Vinters, H. V. (2010). Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disorders, Banqueri, M., Méndez, M2(5), 541–549. https://doi.org/10.1111/j.1399-5618.2010.00838.x
  • Amateau, S. K., Alt, J. J., Stamps, C. L., & McCarthy, M. M. (2004). Brain estradiol content in newborn rats: Sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology, 145(6), 2906–2917. https://doi.org/10.1210/en.2003-1363
  • Baldy, C., Fournier, S., Boisjoly-Villeneuve, S., Tremblay, M.-È., & Kinkead, R. (2018). The influence of sex and neonatal stress on medullary microglia in rat pups. Experimental Physiology, 103(9), 1192–1199. https://doi.org/10.1113/EP087088
  • Banasr, M., Chowdhury, G. M. I., Terwilliger, R., Newton, S. S., Duman, R. S., Behar, K. L., & Sanacora, G. (2010). Glial pathology in an animal model of depression: Reversal of stress- induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Molecular Psychiatry, 15(5), 501–511. https://doi.org/10.1038/mp.2008.106
  • Bangasser, D. A., & Wicks, B. (2017). Sex-specific mechanisms for responding to stress. Journal of Neuroscience Research, 95(1-2), 75–82. https://doi.org/10.1002/jnr.23812
  • Banqueri, M., Méndez, M., Gómez-Lázaro, E., & Arias, J. L. (2019). Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress, 22(5), 563–570. https://doi.org/10.1080/10253890.2019.1604666
  • Barbaccia, M. L. (2004). Neurosteroidogenesis: Relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Critical Reviews in Neurobiology, 16(1–2), 67–74. https://doi.org/10.1615/critrevneurobiol.v16.i12.70
  • Barbaccia, M. L., Roscetti, G., Trabucchi, M., Mostallino, M. C., Concas, A., Purdy, R. H., & Biggio, G. (1996). Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology, 63(2), 166–172. https://doi.org/10.1159/000126953
  • Barbaccia, M. L., Roscetti, G., Trabucchi, M., Purdy, R. H., Mostallino, M. C., Concas, A., & Biggio, G. (1997). The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. British Journal of Pharmacology, 120(8), 1582–1588. https://doi.org/10.1038/sj.bjp.0701046
  • Barreto-Cordero, L. M., Ríos-Carrillo, J., Roldán-Roldán, G., Rasia-Filho, A. A., Flores, G., Bringas, M. E., Briones-Aranda, A., & Picazo, O. (2020). Cyclic changes and actions of progesterone and allopregnanolone on cognition and hippocampal basal (stratum oriens) dendritic spines of female rats. Behavioural Brain Research, 379, 112355. https://doi.org/10.1016/j.bbr.2019.112355
  • Baulieu, E. E., Robel, P., & Schumacher, M. (2001). Neurosteroids: Beginning of the story. International Review of Neurobiology, 46, 1–32. https://doi.org/10.1016/s0074-7742(01)46057-0
  • Beato, M., Herrlich, P., & Schütz, G. (1995). Steroid hormone receptors: Many actors in search of a plot. Cell, 83(6), 851–857. https://doi.org/10.1016/0092-8674(95)90201-5
  • Belelli, D., Casula, A., Ling, A., & Lambert, J. J. (2002). The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology, 43(4), 651–661. https://doi.org/10.1016/s0028-3908(02)00172-7
  • Bian, Y., Pan, Z., Hou, Z., Huang, C., Li, W., & Zhao, B. (2012). Learning, memory, and glial cell changes following recovery from chronic unpredictable stress. Brain Research Bulletin, 88(5), 471–476. https://doi.org/10.1016/j.brainresbull.2012.04.008
  • Bitran, D., Hilvers, R. J., & Kellogg, C. K. (1991). Anxiolytic effects of 3 alpha-hydroxy-5 alpha[beta]-pregnan-20-one: Endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Research, 561(1), 157–161. https://doi.org/10.1016/0006-8993(91)90761-j
  • Black, P. H. (2003). The inflammatory response is an integral part of the stress response: Implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain, Behavior, and Immunity, 17(5), 350–364. https://doi.org/10.1016/s0889-1591(03)00048-5
  • Bortolato, M., Devoto, P., Roncada, P., Frau, R., Flore, G., Saba, P., Pistritto, G., Soggiu, A., Pisanu, S., Zappala, A., Ristaldi, M. S., Tattoli, M., Cuomo, V., Marrosu, F., & Barbaccia, M. L. (2011). Isolation rearing-induced reduction of brain 5α-reductase expression: Relevance to dopaminergic impairments. Neuropharmacology, 60(7-8), 1301–1308. https://doi.org/10.1016/j.neuropharm.2011.01.013
  • Calcia, M. A., Bonsall, D. R., Bloomfield, P. S., Selvaraj, S., Barichello, T., & Howes, O. D. (2016). Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology, 233(9), 1637–1650. https://doi.org/10.1007/s00213-016-4218-9
  • Caruso, D., Pesaresi, M., Maschi, O., Giatti, S., Garcia-Segura, L. M., & Melcangi, R. C. (2010). Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. Journal of Neuroendocrinology, 22(11), 1137–1147. https://doi.org/10.1111/j.1365-2826.2010.02064.x
  • Catale, C., Martini, A., Piscitelli, R. M., Senzasono, B., Iacono, L. L., Mercuri, N. B., Guatteo, E., & Carola, V. (2022). Early-life social stress induces permanent alterations in plasticity and perineuronal nets in the mouse anterior cingulate cortex. The European Journal of Neuroscience, 56(10), 5763–5783. https://doi.org/10.1111/ejn.15825
  • Chang, C., Saltzman, A., Yeh, S., Young, W., Keller, E., Lee, H. J., Wang, C., & Mizokami, A. (1995). Androgen receptor: An overview. Critical Reviews in Eukaryotic Gene Expression, 5(2), 97–125. https://doi.org/10.1615/critreveukargeneexpr.v5.i2.10
  • Compagnone, N. A., & Mellon, S. H. (2000). Neurosteroids: Biosynthesis and function of these novel neuromodulators. Frontiers in Neuroendocrinology, 21(1), 1–56. https://doi.org/10.1006/frne.1999.0188
  • Crawley, J. N., Glowa, J. R., Majewska, M. D., & Paul, S. M. (1986). Anxiolytic activity of an endogenous adrenal steroid. Brain Research, 398(2), 382–385. https://doi.org/10.1016/0006-8993(86)91500-3
  • Czéh, B., Simon, M., Schmelting, B., Hiemke, C., & Fuchs, E. (2006). Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology, 31(8), 1616–1626. https://doi.org/10.1038/sj.npp.1300982
  • De Kloet, E. R., Rots, N. Y., & Cools, A. R. (1996). Jun Brain-corticosteroid hormone dialogue: Slow and persistent. Cellular and Molecular Neurobiology, 16(3), 345–356. https://doi.org/10.1007/BF02088100
  • Delpech, J. C., Wei, L., Hao, J., Yu, X., Madore, C., Butovsky, O., & Kaffman, A. (2016). Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain, Behavior, and Immunity, 57, 79–93. https://doi.org/10.1016/j.bbi.2016.06.006
  • Dimatelis, J. J., Hendricks, S., Hsieh, J., Vlok, N. M., Bugarith, K., Daniels, W. M. U., & Russell, V. A. (2013). Exercise partly reverses the effect of maternal separation on hippocampal proteins in 6-hydroxydopamine-lesioned rat brain. Experimental Physiology, 98(1), 233–244. https://doi.org/10.1113/expphysiol.2012.066720
  • Dong, E., Matsumoto, K., Uzunova, V., Sugaya, I., Takahata, H., Nomura, H., Watanabe, H., Costa, E., & Guidotti, A. (2001). Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proceedings of the National Academy of Sciences, 98(5), 2849–2854. https://doi.org/10.1073/pnas.051628598
  • Drzewiecki, C. M., Willing, J., & Juraska, J. M. (2020). Influences of age and pubertal status on number and intensity of perineuronal nets in the rat medial prefrontal cortex. Brain Structure & Function, 225(8), 2495–2507. https://doi.org/10.1007/s00429-020-02137-z
  • Dufau, M. L., Catt, K. J., & Tsuruhara, T. (1971). Gonadotrophin stimulation of testosterone production by the rat testis in vitro. Biochimica et Biophysica Acta, 252(3), 574–579. https://doi.org/10.1016/0304-4165(71)90161-9
  • Eck, S. R., Ardekani, C. S., Salvatore, M., Luz, S., Kim, E. D., Rogers, C. M., Hall, A., Lee, D. E., Famularo, S. T., Bhatnagar, S., & Bangasser, D. A. (2020). The effects of early life adversity on growth, maturation, and steroid hormones in male and female rats. The European Journal of Neuroscience, 52(1), 2664–2680. https://doi.org/10.1111/ejn.14609
  • Eck, S. R., Palmer, J. L., Bavley, C. C., Karbalaei, R., Ordoñes Sanchez, E., Flowers, J., Holley, A., Wimmer, M. E., & Bangasser, D. A. (2022). Effects of early life adversity on male reproductive behavior and the medial preoptic area transcriptome. Neuropsychopharmacology, 47(6), 1231–1239. https://doi.org/10.1038/s41386-022-01282-9
  • Eicheler, W., Tuohimaa, P., Vilja, P., Adermann, K., Forssmann, W. G., & Aumüller, G. (1994). Immunocytochemical localization of human 5 alpha-reductase 2 with polyclonal antibodies in androgen target and non-target human tissues. The Journal of Histochemistry and Cytochemistry, 42(5), 667–675. https://doi.org/10.1177/42.5.8157936
  • Evans, A., Terstege, D. J., Scott, G. A., Tsutsui, M., & Epp, J. R. (2022). Neurogenesis mediated plasticity is associated with reduced neuronal activity in CA1 during context fear memory retrieval. Scientific Reports, 12(1), 7016. https://doi.org/10.1038/s41598-022-10947-w
  • Faturi, C. B., Tiba, P. A., Kawakami, S. E., Catallani, B., Kerstens, M., & Suchecki, D. (2010). Disruptions of the mother-infant relationship and stress-related behaviours: Altered corticosterone secretion does not explain everything. Neuroscience and Biobehavioral Reviews, 34(6), 821–834. https://doi.org/10.1016/j.neubiorev.2009.09.002
  • Fevold, H. R., Lorence, M. C., McCarthy, J. L., Trant, J. M., Kagimoto, M., Waterman, M. R., & Mason, J. I. (1989). Rat P450(17 alpha) from testis: Characterization of a full-length cDNA encoding a unique steroid hydroxylase capable of catalyzing both delta 4- and delta 5-steroid-17,20-lyase reactions. Molecular Endocrinology, 3(6), 968–975. https://doi.org/10.1210/mend-3-6-968
  • Filipović, D., Zlatković, J., Gass, P., & Inta, D. (2013). The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression. Neuroscience, 236, 47–54. https://doi.org/10.1016/j.neuroscience.2013.01.033
  • Fonken, L. K., Frank, M. G., Gaudet, A. D., D’Angelo, H. M., Daut, R. A., Hampson, E. C., Ayala, M. T., Watkins, L. R., & Maier, S. F. (2018). Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain, Behavior, and Immunity, 70, 257–267. https://doi.org/10.1016/j.bbi.2018.03.005
  • Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R., & Maier, S. F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain, Behavior, and Immunity, 21(1), 47–59. https://doi.org/10.1016/j.bbi.2006.03.005
  • Frank, M. G., Fonken, L. K., Watkins, L. R., & Maier, S. F. (2019). Microglia: Neuroimmune-sensors of stress. Seminars in Cell & Developmental Biology, 94, 176–185. https://doi.org/10.1016/j.semcdb.2019.01.001
  • Frye, C., Edinger, K., Lephart, E., & Walf, A. (2010). 3α-androstanediol, but not testosterone, attenuates age-related decrements in cognitive, anxiety, and depressive behavior of male rats. Frontiers in Aging Neuroscience, 2, 15. https://doi.org/10.3389/fnagi.2010.00015
  • Ganguly, P., Thompson, V., Gildawie, K., & Brenhouse, H. C. (2018). Adolescent food restriction in rats alters prefrontal cortex microglia in an experience-dependent manner. Stress (Amsterdam, Netherlands), 21(2), 162–168. https://doi.org/10.1080/10253890.2017.1423054
  • Gao, L., Zhao, F., Zhang, Y., Wang, W., & Cao, Q. (2020). Diminished ovarian reserve induced by chronic unpredictable stress in C57BL/6 mice. Gynecological Endocrinology, 36(1), 49–54. https://doi.org/10.1080/09513590.2019.1631274
  • Giatti, S., Diviccaro, S., Serafini, M. M., Caruso, D., Garcia-Segura, L. M., Viviani, B., & Melcangi, R. C. (2020). Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Frontiers in Neuroendocrinology, 56, 100804. https://doi.org/10.1016/j.yfrne.2019.100804
  • Gildawie KR, Ryll LM, Hexter JC, Peterzell S, Valentine AA, Brenhouse HC. (2021). A two-hit adversity model in developing rats reveals sex-specific impacts on prefrontal cortex structure and behavior. Dev Cogn Neurosci. 48:100924. https://doi.org/10.1016/j.dcn.2021.100924.
  • Gildawie, K. R., Ryll, L. M., Hexter, J. C., Peterzell, S., Valentine, A. A., & Brenhouse, H. C. (2021). A two- hit adversity model in developing rats reveals sex-specific impacts on PFC structure and behavior. Developmental Cognitive Neuroscience, 48, 100924. https://doi.org/10.1016/j.dcn.2021.100924
  • Gildawie, K. R., Honeycutt, J. A., & Brenhouse, H. C. (2020). Region-specific effects of maternal separation on perineuronal net and parvalbumin-expressing interneuron formation in male and female rats. Neuroscience, 428, 23–37. https://doi.org/10.1016/j.neuroscience.2019.12.010
  • Gillies, G. E., & McArthur, S. (2010). Estrogen actions in the brain and the basis for differential action in men and women: A case for sex-specific medicines. Pharmacological Reviews, 62(2), 155–198. https://doi.org/10.1124/pr.109.002071
  • Giridharan, V. V., Réus, G. Z., Selvaraj, S., Scaini, G., Barichello, T., & Quevedo, J. (2019). Maternal deprivation increases microglial activation and neuroinflammatory markers in the PFC and hippocampus of infant rats. Journal of Psychiatric Research, 115, 13–20. https://doi.org/10.1016/j.jpsychires.2019.05.001
  • Gould, E., Woolley, C. S., Frankfurt, M., & McEwen, B. S. (1990). Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. The Journal of Neuroscience, 10(4), 1286–1291. https://doi.org/10.1523/JNEUROSCI.10-04-01286.1990
  • Guadagno, A., Verlezza, S., Long, H., Wong, T. P., & Walker, C.-D. (2020). It is all in the right amygdala: Increased synaptic plasticity and perineuronal nets in male, but not female, juvenile rat pups after exposure to early-life stress. The Journal of Neuroscience, 40(43), 8276–8291. https://doi.org/10.1523/JNEUROSCI.1029-20.2020
  • Guennoun, R. (2020). Progesterone in the brain: Hormone, neurosteroid and neuroprotectant. International Journal of Molecular Sciences, 21(15), 5271. https://doi.org/10.3390/ijms21155271
  • Hatanaka, Y., Hojo, Y., Mukai, H., Murakami, G., Komatsuzaki, Y., Kim, J., Ikeda, M., Hiragushi, A., Kimoto, T., & Kawato, S. (2015). Rapid increase of spines by dihydrotestosterone and testosterone in hippocampal neurons: Dependence on synaptic androgen receptor and kinase networks. Brain Research, 1621, 121–132. https://doi.org/10.1016/j.brainres.2014.12.011
  • Heitzer, M. D., Wolf, I. M., Sanchez, E. R., Witchel, S. F., & DeFranco, D. B. (2007). Glucocorticoid receptor physiology. Reviews in Endocrine & Metabolic Disorders, 8(4), 321–330. https://doi.org/10.1007/s11154-007-9059-8
  • Hellwig, S., Brioschi, S., Dieni, S., Frings, L., Masuch, A., Blank, T., & Biber, K. (2016). Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain, behavior, and immunity, 55, 126–137. https://doi.org/10.1016/j.bbi.2015.11.008
  • Hernández-Vivanco, A., Cano-Adamuz, N., Sánchez-Aguilera, A., González-Alonso, A., Rodríguez-Fernández, A., Azcoitia, Í., de la Prida, L. M., & Méndez, P. (2022). Sex-specific regulation of inhibition and network activity by local aromatase in the mouse hippocampus. Nature Communications, 13(1), 3913. https://doi.org/10.1038/s41467-022-31635-3
  • Hiipakka, R. A., & Liao, S. (1998). Molecular mechanism of androgen action. Trends in Endocrinology and Metabolism, 9(8), 317–324. https://doi.org/10.1016/s1043-2760(98)00081-2
  • Hinwood, M., Morandini, J., Day, T. A., & Walker, F. R. (2012). Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial PFC. Cerebral Cortex, 22(6), 1442–1454. https://doi.org/10.1093/cercor/bhr229
  • Hinwood, M., Tynan, R. J., Charnley, J. L., Beynon, S. B., Day, T. A., & Walker, F. R. (2013). Chronic stress induced remodeling of the prefrontal: Structural re-organization of microglia and the inhibitory effect of minocycline. Cerebral Cortex, 23(8), 1784–1797. https://doi.org/10.1093/cercor/bhs151
  • Hoeijmakers, L., Ruigrok, S. R., Amelianchik, A., Ivan, D., van Dam, A.-M., Lucassen, P. J., & Korosi, A. (2017). Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer’s disease mouse model. Brain, Behavior, and Immunity, 63, 160–175. https://doi.org/10.1016/j.bbi.2016.12.023
  • Hojo, Y., & Kawato, S. (2018). Neurosteroids in adult hippocampus of male and female rodents: Biosynthesis and actions of sex steroids. Frontiers in Endocrinology, 9, 183. https://doi.org/10.3389/fendo.2018.00183
  • Hokenson, R. E., Alam, Y. H., Short, A. K., Jung, S., Jang, C., & Baram, T. Z. (2022). Sex-dependent effects of multiple acute concurrent stresses on memory: A role for hippocampal estrogens. Frontiers in Behavioral Neuroscience, 16, 984494. https://doi.org/10.3389/fnbeh.2022.984494
  • Hokenson, R. E., Short, A. K., Chen, Y., Pham, A. L., Adams, E. T., Bolton, J. L., Swarup, V., Gall, C. M., & Baram, T. Z. (2021). Unexpected role of physiological estrogen in acute stress-induced memory deficits. The Journal of Neuroscience. 41(4), 648–662. https://doi.org/10.1523/JNEUROSCI.2146-20.2020
  • Holst, J. P., Soldin, O. P., Guo, T., & Soldin, S. J. (2004). Steroid hormones: Relevance and measurement in the clinical laboratory. Clinics in Laboratory Medicine, 24(1), 105–118. https://doi.org/10.1016/j.cll.2004.01.004
  • Horchar, M. J., & Wohleb, E. S. (2019). Glucocorticoid receptor antagonism prevents microglia-mediated neuronal remodeling and behavioral despair following chronic unpredictable stress. Brain, Behavior, and Immunity, 81, 329–340. https://doi.org/10.1016/j.bbi.2019.06.030
  • Im, A., & Appleman, L. J. (2010). Mifepristone: Pharmacology and clinical impact in reproductive medicine, endocrinology and oncology. Expert Opinion on Pharmacotherapy, 11(3), 481–488. https://doi.org/10.1517/14656560903535880
  • Jin, Y., & Penning, T. M. (2001). Steroid 5alpha-reductases and 3alpha-hydroxysteroid dehydrogenases: Key enzymes in androgen metabolism. Best Practice & Research. Clinical Endocrinology & Metabolism, 15(1), 79–94. https://doi.org/10.1053/beem.2001.0120
  • Jolivel, V., Brun, S., Binamé, F., Benyounes, J., Taleb, O., Bagnard, D., De Sèze, J., Patte-Mensah, C., & Mensah-Nyagan, A.-G. (2021). Microglial cell morphology and phagocytic activity are critically regulated by the neurosteroid allopregnanolone: A possible role in neuroprotection. Cells, 10(3), 698. https://doi.org/10.3390/cells10030698
  • Katahira, T., Miyazaki, N., & Motoyama, J. (2018). Immediate effects of maternal separation on the development of interneurons derived from medial ganglionic eminence in the neonatal mouse hippocampus. Development, Growth & Differentiation, 60(5), 278–290. https://doi.org/10.1111/dgd.12540
  • Kehoe, P., Mallinson, K., McCormick, C. M., & Frye, C. A. (2000). Central allopregnanolone is increased in rat pups in response to repeated, short episodes of neonatal isolation. Developmental Brain Research, 124(1-2), 133–136. https://doi.org/10.1016/S0165-3806(00)00106-1
  • Kettenmann, H., Hanisch, U.-K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews, 91(2), 461–553. https://doi.org/10.1152/physrev.00011.2010
  • Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., Malarkey, W. B., & Sheridan, J. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Sciences, 93(7), 3043–3047. https://doi.org/10.1073/pnas.93.7.3043
  • Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: A critical review. Learning & Memory, 22(9), 411–416. https://doi.org/10.1101/lm.037291.114
  • Kimoto, T, Tsurugizawa, T, Ohta, Y, Makino, J, Hojo, Y, Takata, N, Kawato, S., & Ho, S. (2001). Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium- dependent synthesis. Endocrinology, 142(8), 3578–3589. https://doi.org/10.1210/endo.142.8.8327
  • Klimczak, P., Rizzo, A., Castillo-Gómez, E., Perez-Rando, M., Gramuntell, Y., Beltran, M., & Nacher, J. (2021). Parvalbumin interneurons and perineuronal nets in the hippocampus and retrosplenial cortex of adult male mice after early social isolation stress and perinatal NMDA receptor antagonist treatment. Frontiers in Synaptic Neuroscience, 13, 733989. https://doi.org/10.3389/fnsyn.2021.733989
  • Kojo, A., Yamada, K., Kubo, K. Y., Yamashita, A., & Yamamoto, T. (2010). Occlusal disharmony in mice transiently activates microglia in hippocampal CA1 region but not in dentate gyrus. The Tohoku Journal of Experimental Medicine, 221(3), 237–243. https://doi.org/10.1620/tjem.221.237
  • Kontula, K., Paavonen, T., Luukkainen, T., & Andersson, L. C. (1983). Binding of progestins to the glucocorticoid receptor. Correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochemical Pharmacology, 32(9), 1511–1518. https://doi.org/10.1016/0006-2952(83)90474-4
  • Koritz, S. B., & Kumar, A. M. (1970). On the mechanism of action of the adrenocorticotrophic hormone. The stimulation of the activity of enzymes involved in pregnenolone synthesis. The Journal of Biological Chemistry, 245(1), 152–159. https://doi.org/10.1016/S0021-9258(18)63433-7
  • Kraus, K. L., Chordia, A. P., Drake, A. W., Herman, J. P., & Danzer, S. C. (2022). Hippocampal interneurons are direct targets for circulating glucocorticoids. The Journal of Comparative Neurology, 530(12), 2100–2112. https://doi.org/10.1002/cne.25322
  • Kvarta, M. D., Bradbrook, K. E., Dantrassy, H. M., Bailey, A. M., & Thompson, S. M. (2015). Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses. Journal of Neurophysiology, 114(3), 1713–1724. https://doi.org/10.1152/jn.00359.2015
  • Laham, B. J., & Gould, E. (2022). How stress influences the dynamic plasticity of the brain’s extracellular matrix. Frontiers in Cellular Neuroscience, 15, 814287. https://doi.org/10.3389/fncel.2021.814287
  • Laham, B. J., Murthy, S. S., Hanani, M., Clappier, M., Boyer, S., Vasquez, B., & Gould, E. (2022). The estrous cycle modulates early-life adversity effects on mouse avoidance behavior through progesterone signaling. Nature Communications, 13(1), 7537. https://doi.org/10.1038/s41467-022-35068-w
  • Lee, J., & Lee, K. (2021). Parvalbumin-expressing GABAergic interneurons and perineuronal nets in the prelimbic and orbitofrontal cortices in association with basal anxiety-like behaviors in adult mice. Behavioural Brain Research, 398, 112915. https://doi.org/10.1016/j.bbr.2020.112915
  • Li, L. F., Yang, J., Ma, S. P., & Qu, R. (2013). Magnolol treatment reversed the glial pathology in an unpredictable chronic mild stress-induced rat model of depression. European Journal of Pharmacology, 711(1-3), 42–49. https://doi.org/10.1016/j.ejphar.2013.04.008
  • Liu, Q., Li, B., Zhu, H.-Y., Wang, Y.-Q., Yu, J., & Wu, G.-C. (2009). Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression. European Neuropsychopharmacology, 19(11), 796–805. https://doi.org/10.1016/j.euroneuro.2009.06.010
  • Liu, Q., Li, B., Zhu, H.-Y., Wang, Y.-Q., Yu, J., & Wu, G.-C. (2011). Glia atrophy in the hippocampus of chronic unpredictable stress-induced depression model rats is reversed by electroacupuncture treatment. Journal of Affective Disorders, 128(3), 309–313. https://doi.org/10.1016/j.jad.2010.07.007
  • Liu, R., Yang, X. D., Liao, X. M., Xie, X. M., Su, Y. A., Li, J. T., Wang, X. D., & Si, T. M. (2016). Early postnatal stress suppresses the developmental trajectory of hippocampal pyramidal neurons: The role of CRHR1. Brain Structure & Function, 221(9), 4525–4536. https://doi.org/10.1007/s00429-016-1182-4
  • Lloyd-Evans, E., & Waller-Evans, H. (2020). Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays in Biochemistry, 64(3), 591–606. https://doi.org/10.1042/EBC20200043
  • López-Calderón, A., Gonzaléz-Quijano, M. I., Tresguerres, J. A., & Ariznavarreta, C. (1990). Role of LHRH in the gonadotrophin response to restraint stress in intact male rats. The Journal of Endocrinology, 124(2), 241–246. https://doi.org/10.1677/joe.0.1240241
  • Lou, Y. X., Li, J., Wang, Z. Z., Xia, C. Y., & Chen, N. H. (2018). Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats. Psychopharmacology, 235(9), 2529–2540. https://doi.org/10.1007/s00213-018-4936-2
  • Luine, V., Villegas, M., Martinez, C., & McEwen, B. S. (1994). Repeated stress causes reversible impairments of spatial memory performance. Brain Research, 639(1), 167–170. https://doi.org/10.1016/0006-8993(94)91778-7
  • MacLusky, N. J., Walters, M. J., Clark, A. S., & Toran-Allerand, C. D. (1994). Aromatase in the cerebral cortex, hippocampus, and mid-brain: Ontogeny and developmental implications. Molecular and Cellular Neurosciences, 5(6), 691–698. https://doi.org/10.1006/mcne.1994.1083
  • Manna, P. R., Cohen-Tannoudji, J., Counis, R., Garner, C. W., Huhtaniemi, I., Kraemer, F. B., & Stocco, D. M. (2013). Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: Its role in the regulation of the steroidogenic acute regulatory protein. The Journal of Biological Chemistry, 288(12), 8505–8518. https://doi.org/10.1074/jbc.M112.417873
  • Mataradze, G. D., Kurabekova, R. M., & Rozen, V. B. (1992). The role of sex steroids in the formation of sex-differentiated concentrations of corticosteroid-binding globulin in rats. The Journal of Endocrinology, 132(2), 235–240. https://doi.org/10.1677/joe.0.1320235
  • McEwen, B. (2002). Estrogen actions throughout the brain. Recent Progress in Hormone Research, 57(1), 357–384. https://doi.org/10.1210/rp.57.1.357
  • McEwen, B. S., Nasca, C., & Gray, J. D. (2016). Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41(1), 3–23. https://doi.org/10.1038/npp.2015.171
  • Meffre, D., Pianos, A., Liere, P., Eychenne, B., Cambourg, A., Schumacher, M., Stein, D. G., & Guennoun, R. (2007). Steroid profiling in brain and plasma of male and pseudopregnant female rats after traumatic brain injury: Analysis by gas chromatography/mass spectrometry. Endocrinology, 148(5), 2505–2517. https://doi.org/10.1210/en.2006-1678
  • Mellon, S. H., & Griffin, L. D. (2002). Neurosteroids: Biochemistry and clinical significance. Trends in Endocrinology and Metabolism, 13(1), 35–43. https://doi.org/10.1016/s1043-2760(01)00503-3
  • Miller, W. L., & Bose, H. S. (2011). Early steps in steroidogenesis: Intracellular cholesterol trafficking. Journal of Lipid Research, 52(12), 2111–2135. https://doi.org/10.1194/jlr.R016675
  • Mirescu, C., Peters, J. D., & Gould, E. (2004). Early life experience alters response of adult neurogenesis to stress. Nature Neuroscience, 7(8), 841–846. https://doi.org/10.1038/nn1290
  • Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A., & Chattarji, S. (2005). Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proceedings of the National Academy of Sciences, 102(26), 9371–9376. https://doi.org/10.1073/pnas.0504011102
  • Miyaso, H., Nagahori, K., Takano, K., Omotehara, T., Kawata, S., Li, Z. L., Kuramasu, M., Wu, X., Ogawa, Y., & Itoh, M. (2021). Neonatal maternal separation causes decreased numbers of sertoli cell, spermatogenic cells, and sperm in mice. Toxicology Mechanisms and Methods, 31(2), 116–125. https://doi.org/10.1080/15376516.2020.1841865
  • Moisan, M.-P. (2021). Sexual dimorphism in glucocorticoid stress response. International Journal of Molecular Sciences, 22(6), 3139. https://doi.org/10.3390/ijms22063139
  • Monroy, E., Hernández-Torres, E., & Flores, G. (2010). Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. Journal of Chemical Neuroanatomy, 40(2), 93–101. https://doi.org/10.1016/j.jchemneu.2010.05.005
  • Murphy-Royal, C., Gordon, G. R., & Bains, J. S. (2019). Stress-induced structural and functional modifications of astrocytes—Further implicating glia in the central response to stress. Glia, 67(10), 1806–1820. https://doi.org/10.1002/glia.23610
  • Murthy, S., Kane, G. A., Katchur, N. J., Lara Mejia, P. S., Obiofuma, G., Buschman, T. J., McEwen, B. S., & Gould, E. (2019). Perineuronal nets, inhibitory interneurons, and anxiety-related ventral hippocampal neuronal oscillations are altered by early life adversity. Biological Psychiatry, 85(12), 1011–1020. https://doi.org/10.1016/j.biopsych.2019.02.021
  • Musholt, K., Cirillo, G., Cavaliere, C., Rosaria Bianco, M., Bock, J., Helmeke, C., Braun, K., & Papa, M. (2009). Neonatal separation stress reduces glial fibrillary acidic protein- and S100beta-immunoreactive astrocytes in the rat medial precentral cortex. Developmental Neurobiology, 69(4), 203–211. https://doi.org/10.1002/dneu.20694
  • Muthu, S. J., Lakshmanan, G., Shimray, K. W., Kaliyappan, K., Sathyanathan, S. B., & Seppan, P. (2022). Testosterone influence on microtubule-associated proteins and spine density in hippocampus: Implications on learning and memory. Developmental Neuroscience, 44(6), 498–507. https://doi.org/10.1159/000525038
  • Nair, A., & Bonneau, R. H. (2006). Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. Journal of Neuroimmunology, 171(1-2), 72–85. https://doi.org/10.1016/j.jneuroim.2005.09.012
  • Nelson, L. R., & Bulun, S. E. (2001). Estrogen production and action. Journal of the American Academy of Dermatology, 45(3 Suppl), S116–S124. https://doi.org/10.1067/mjd.2001.117432
  • Omura, T. (2006). Mitochondrial P450s. Chemico-Biological Interactions, 163(1-2), 86–93. https://doi.org/10.1016/j.cbi.2006.06.008
  • Osawa, Y., Higashiyama, T., Shimizu, Y., & Yarborough, C. (1993). Multiple functions of aromatase and the active site structure; aromatase is the placental estrogen 2- hydroxylase. The Journal of Steroid Biochemistry and Molecular Biology, 44(4-6), 469–480. https://doi.org/10.1016/0960-0760(93)90252-r
  • Pallarès, M., Llidó, A., Mòdol, L., Vallée, M., & Darbra, S. (2015). Finasteride administration potentiates the disruption of prepulse inhibition induced by forced swim stress. Behavioural Brain Research, 289, 55–60. https://doi.org/10.1016/j.bbr.2015.04.023
  • Papadopoulos, V., Amri, H., Boujrad, N., Cascio, C., Culty, M., Garnier, M., Hardwick, M., Li, H., Vidic, B., Brown, A. S., Reversa, J. L., Bernassau, J. M., & Drieu, K. (1997). Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids, 62(1), 21–28. https://doi.org/10.1016/s0039-128x(96)00154-7
  • Paris, J. J., & Frye, C. A. (2011a). Gestational exposure to variable stressors produces decrements in cognitive and neural development of juvenile male and female rats. Current Topics in Medicinal Chemistry, 11(13), 1706–1713.
  • Paris, J. J., & Frye, C. A. (2011b). Juvenile offspring of rats exposed to restraint stress in late gestation have impaired cognitive performance and dysregulated progestogen formation. Stress (Amsterdam, Netherlands), 14(1), 23–32. https://doi.org/10.3109/10253890.2010.512375
  • Paris, J. J., Brunton, P. J., Russell, J. A., & Frye, C. A. (2011). Immune stress in late pregnant rats decreases length of gestation and fecundity, and alters later cognitive and affective behaviour of surviving pre-adolescent offspring. Stress, 14(6), 652–664. https://doi.org/10.3109/10253890.2011.628719
  • Park, J. H., Yoo, K.-Y., Lee, C. H., Kim, I. H., Shin, B. N., Choi, J. H., Park, J. H., Hwang, I. K., & Won, M.-H. (2011). Comparison of glucocorticoid receptor and ionized calcium-binding adapter molecule 1 immunoreactivity in the adult and aged gerbil hippocampus following repeated restraint stress. Neurochemical Research, 36(6), 1037–1045. https://doi.org/10.1007/s11064-011-0444-z
  • Penning, T. M., Jin, Y., Steckelbroeck, S., Lanisnik Rizner, T., & Lewis, M. (2004). Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins. Molecular and cellular endocrinology, 215(1-2), 63–72. https://doi.org/10.1016/j.mce.2003.11.006
  • Pesaresi, M., Maschi, O., Giatti, S., Garcia-Segura, L. M., Caruso, D., & Melcangi, R. C. (2010). Sex differences in neuroactive steroid levels in the nervous system of diabetic and non-diabetic rats. Hormones and Behavior, 57(1), 46–55. https://doi.org/10.1016/j.yhbeh.2009.04.008
  • Pinna, G., Agis-Balboa, R. C., Doueiri, M.-S., Guidotti, A., & Costa, E. (2004). Brain neurosteroids in gender-related aggression induced by social isolation. Critical Reviews in Neurobiology, 16(1-2), 75–82.
  • Porcu, P., Barron, A. M., Frye, C. A., Walf, A. A., Yang, S.-Y., He, X.-Y., Morrow, A. L., Panzica, G. C., & Melcangi, R. C. (2016). Neurosteroidogenesis today: Novel targets for neuroactive steroid synthesis and action and their relevance for translational research. Journal of Neuroendocrinology, 28(2), 12351. https://doi.org/10.1111/jne.12351
  • Puia, G., Mienville, J. M., Matsumoto, K., Takahata, H., Watanabe, H., Costa, E., & Guidotti, A. (2003). On the putative physiological role of allopregnanolone on GABAA receptor function. Neuropharmacology, 44(1), 49–55. https://doi.org/10.1016/S0028-3908(02)00341-6
  • Purdy, R. H., Morrow, A. L., Moore, P. H., & Paul, S. M. (1991). Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proceedings of the National Academy of Sciences, 88(10), 4553–4557. https://doi.org/10.1073/pnas.88.10.4553
  • Raff, H. (2016). CORT, Cort, B, Corticosterone, and now cortistatin: Enough already!. Endocrinology, 157(9), 3307–3308. https://doi.org/10.1210/en.2016-1500
  • Reddy, D. S., & Jian, K. (2010). The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. The Journal of Pharmacology and Experimental Therapeutics, 334(3), 1031–1041. https://doi.org/10.1124/jpet.110.169854
  • Reddy, D. S., & Rogawski, M. A. (2002). Stress-induced deoxycorticosterone-derived neurosteroids modulate GABAA receptor function and seizure susceptibility. The Journal of Neuroscience, 22(9), 3795–3805. https://doi.org/10.1523/JNEUROSCI.22-09-03795.2002
  • Reschke-Hernández, A. E., Okerstrom, K. L., Bowles Edwards, A., & Tranel, D. (2017). Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test. Journal of Neuroscience Research, 95(1-2), 106–114. https://doi.org/10.1002/jnr.23851
  • Retana-Márquez, S., Bonilla-Jaime, H., Vázquez-Palacios, G., Martínez-García, R., & Velázquez-Moctezuma, J. (2003). Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Hormones and Behavior, 44(4), 327–337. https://doi.org/10.1016/j.yhbeh.2003.04.001
  • Réus, G. Z., Fernandes, G. C., de Moura, A. B., Silva, R. H., Darabas, A. C., de Souza, T. G., Abelaira, H. M., Carneiro, C., Wendhausen, D., Michels, M., Pescador, B., Dal-Pizzol, F., Macêdo, D. S., & Quevedo, J. (2017). Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress. Journal of Psychiatric Research, 95, 196–207. https://doi.org/10.1016/j.jpsychires.2017.08.020
  • Réus, G. Z., Giridharan, V. V., de Moura, A. B., Borba, L. A., Botelho, M. E. M., Behenck, J. P., Generoso, J. S., Selvaraj, S., Bhatti, G., Barichello, T., & Quevedo, J. (2021). The impact of early life stress and immune challenge on behavior and glia cells alteration in late adolescent rats. International Journal of Developmental Neuroscience, 81(5), 407–415. https://doi.org/10.1002/jdn.10108
  • Réus, G. Z., Silva, R. H., de Moura, A. B., Presa, J. F., Abelaira, H. M., Abatti, M., Vieira, A., Pescador, B., Michels, M., Ignácio, Z. M., Dal-Pizzol, F., & Quevedo, J. (2019). Early maternal deprivation induces microglial activation, alters glial fibrillary acidic protein immunoreactivity and indoleamine 2,3-dioxygenase during the development of offspring rats. Molecular Neurobiology, 56(2), 1096–1108. https://doi.org/10.1007/s12035-018-1161-2
  • Riga, D., Kramvis, I., Koskinen, M. K., van Bokhoven, P., van der Harst, J. E., Heistek, T. S., Jaap Timmerman, A., van Nierop, P., van der Schors, R. C., Pieneman, A. W., de Weger, A., van Mourik, Y., Schoffelmeer, A. N. M., Mansvelder, H. D., Meredith, R. M., Hoogendijk, W. J. G., Smit, A. B., & Spijker, S. (2017). Hippocampal extracellular matrix alterations contribute to cognitive impairment associated with a chronic depressive-like state in rats. Science Translational Medicine, 9(421), eaai8753. https://doi.org/10.1126/scitranslmed.aai8753
  • Rochefort, H., & Garcia, M. (1976). Androgen on the estrogen receptor. I—binding and in vivo nuclear translocation. Steroids, 28(4), 549–560. https://doi.org/10.1016/0039-128x(76)90023-4
  • Romeo, R. D., Karatsoreos, I. N., Ali, F. S., & McEwen, B. S. (2007). The effects of acute stress and pubertal development on metabolic hormones in the rat. Stress (Amsterdam, Netherlands), 10(1), 101–106. https://doi.org/10.1080/10253890701204270
  • Römer, B., & Gass, P. (2010). Finasteride‐induced depression: New insights into possible pathomechanisms. Journal of Cosmetic Dermatology, 9(4), 331–332. https://doi.org/10.1111/j.1473-2165.2010.00533.x
  • Römer, B., Pfeiffer, N., Lewicka, S., Ben-Abdallah, N., Vogt, M. A., Deuschle, M., Vollmayr, B., & Gass, P. (2010). Finasteride treatment inhibits adult hippocampal neurogenesis in male mice. Pharmacopsychiatry, 43(5), 174–178. https://doi.org/10.1055/s-0030-1249095
  • Rone, M. B., Fan, J., & Papadopoulos, V. (2009). Cholesterol transport in steroid biosynthesis: Role of protein-protein interactions and implications in disease states. Biochimica et Biophysica Acta, 1791(7), 646–658. https://doi.org/10.1016/j.bbalip.2009.03.001
  • Roque, A., Ochoa-Zarzosa, A., & Torner, L. (2016). Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity, 55, 39–48. https://doi.org/10.1016/j.bbi.2015.09.017
  • Rosol, T. J., Yarrington, J. T., Latendresse, J., & Capen, C. C. (2001). Adrenal gland: Structure, function, and mechanisms of toxicity. Toxicologic Pathology, 29(1), 41–48. https://doi.org/10.1080/019262301301418847
  • Rubinow, K. B. (2018). An intracrine view of sex steroids, immunity, and metabolic regulation. Molecular Metabolism, 15, 92–103. https://doi.org/10.1016/j.molmet.2018.03.001
  • Saavedra, L. M., Fenton Navarro, B., & Torner, L. (2017). Early life stress activates glial cells in the hippocampus but attenuates cytokine secretion in response to an immune challenge in rat pups. Neuroimmunomodulation, 24(4-5), 242–255. https://doi.org/10.1159/000485383
  • Saldanha, C. J., Remage-Healey, L., & Schlinger, B. A. (2011). Synaptocrine signaling: Steroid synthesis and action at the synapse. Endocrine Reviews, 32(4), 532–549. https://doi.org/10.1210/er.2011-0004
  • Santiago, A. N., Lim, K. Y., Opendak, M., Sullivan, R. M., & Aoki, C. (2018). Early life trauma increases threat response of peri‐weaning rats, reduction of axo‐somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala. The Journal of Comparative Neurology, 526(16), 2647–2664. https://doi.org/10.1002/cne.24522
  • Saur, L., Baptista, P. P. A., Bagatini, P. B., Neves, L. T., de Oliveira, R. M., Vaz, S. P., Ferreira, K., Machado, S. A., Mestriner, R. G., & Xavier, L. L. (2016). Experimental post-traumatic stress disorder decreases astrocyte density and changes astrocytic polarity in the CA1 hippocampus of male rats. Neurochemical Research, 41(4), 892–904. https://doi.org/10.1007/s11064-015-1770-3
  • Schiavone, S., Sorce, S., Dubois-Dauphin, M., Jaquet, V., Colaianna, M., Zotti, M., Cuomo, V., Trabace, L., & Krause, K.-H. (2009). Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biological Psychiatry, 66(4), 384–392. https://doi.org/10.1016/j.biopsych.2009.04.033
  • Schverer, M., Lanfumey, L., Baulieu, E.-E., Froger, N., & Villey, I. (2018). Neurosteroids: Non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacology & Therapeutics, 191, 190–206. https://doi.org/10.1016/j.pharmthera.2018.06.011
  • Serra, M., Pisu, M. G., Floris, I., & Biggio, G. (2005). Social isolation-induced changes in the hypothalamic–pituitary–adrenal axis in the rat. Stress, 8(4), 259–264. https://doi.org/10.1080/10253890500495244
  • Serra, M., Pisu, M. G., Littera, M., Papi, G., Sanna, E., Tuveri, F., Usala, L., Purdy, R. H., & Biggio, G. (2000). Social isolation-induced decreases in both the abundance of neuroactive steroids and GABAA receptor function in rat brain. Journal of Neurochemistry, 75(2), 732–740. https://doi.org/10.1046/j.1471-4159.2000.0750732.x
  • Shansky, R. M., Hamo, C., Hof, P. R., Lou, W., McEwen, B. S., & Morrison, J. H. (2010). Estrogen promotes stress sensitivity in a PFC–amygdala pathway. Cerebral Cortex, 20(11), 2560–2567. https://doi.org/10.1093/cercor/bhq003
  • Shimizu, H., Ishizuka, Y., Yamazaki, H., & Shirao, T. (2015). Allopregnanolone increases mature excitatory synapses along dendrites via protein kinase A signaling. Neuroscience, 305, 139–145. https://doi.org/10.1016/j.neuroscience.2015.07.079
  • Shirayama, Y., Muneoka, K., Fukumoto, M., Tadokoro, S., Fukami, G., Hashimoto, K., & Iyo, M. (2011). Infusions of allopregnanolone into the hippocampus and amygdala, but not into the nucleus accumbens and medial PFC, produce antidepressant effects on the learned helplessness rats. Hippocampus, 21(10), 1105–1113. https://doi.org/10.1002/hipo.20824
  • Shors, T. J., Chua, C., & Falduto, J. (2001). Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 21(16), 6292–6297. https://doi.org/10.1523/JNEUROSCI.21-16-06292.2001
  • Shors, T. J., Chua, C., & Falduto, J. (2001). Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. The Journal of Neuroscience, 21(16), 6292–6297. https://doi.org/10.1523/JNEUROSCI.21-16-06292.2001
  • Shors, T. J., Pickett, J., Wood, G., & Paczynski, M. (1999). Acute stress persistently enhances estrogen levels in the female rat. Stress, 3(2), 163–171. https://doi.org/10.3109/10253899909001120
  • Simard, J., Ricketts, M.-L., Gingras, S., Soucy, P., Feltus, F. A., & Melner, M. H. (2005). Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocrine Reviews, 26(4), 525–582. https://doi.org/10.1210/er.2002-0050
  • Smail, M. A., Smith, B. L., Shukla, R., Alganem, K., Eby, H. M., Bollinger, J. L., Parikh, R. K., Chambers, J. B., Reigle, J. K., Moloney, R. D., Nawreen, N., Wohleb, E. S., Pantazopoulos, H., McCullumsmith, R. E., & Herman, J. P. (2023). Molecular neurobiology of loss: A role for basolateral amygdala extracellular matrix. Molecular Psychiatry. https://doi.org/10.1038/s41380-023-02231-8
  • Sorg, B. A., Berretta, S., Blacktop, J. M., Fawcett, J. W., Kitagawa, H., Kwok, J. C., & Miquel, M. (2016). Casting a wide net: Role of perineuronal nets in neural plasticity. The Journal of Neuroscience, 36(45), 11459–11468. https://doi.org/10.1523/JNEUROSCI.2351-16.2016
  • Starling, E. H. (1905). The Croonian lectures on the chemical correlation of the functions of the body. Lancet, 166(4275), 339–341.
  • Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M., & Mody, I. (2003). Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences, 100(24), 14439–14444. https://doi.org/10.1073/pnas.2435457100
  • Stocco, D. M., Wang, X., Jo, Y., & Manna, P. R. (2005). Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: More complicated than we thought. Molecular Endocrinology, 19(11), 2647–2659. https://doi.org/10.1210/me.2004-0532
  • Stone, D., & Hechter, O. (1955). Studies on ACTH action in perfused bovine adrenals: Aspects of progesterone as an intermediary in corticosteroidogenesis. Archives of Biochemistry and Biophysics, 54(1), 121–128. https://doi.org/10.1016/0003-9861(55)90014-x
  • Sugama, S., Fujita, M., Hashimoto, M., & Conti, B. (2007). Stress induced morphological microglial activation in the rodent brain: Involvement of interleukin-18. Neuroscience, 146(3), 1388–1399. https://doi.org/10.1016/j.neuroscience.2007.02.043
  • Sze, Y., Gill, A. C., & Brunton, P. J. (2018). Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. Journal of Neuroendocrinology, 30(11), e12644. https://doi.org/10.1111/jne.12644
  • Takatsuru, Y., Nabekura, J., Ishikawa, T., Kohsaka, S., & Koibuchi, N. (2015). Early-life stress increases the motility of microglia in adulthood. The Journal of Physiological Sciences: JPS, 65(2), 187–194. https://doi.org/10.1007/s12576-015-0361-z
  • Tata, J. R. (2005). One hundred years of hormones: A new name sparked multidisciplinary research in endocrinology, which shed light on chemical communication in multicellular organisms. EMBO Reports, 6(6), 490–496. https://doi.org/10.1038/sj.embor.7400444
  • Tay, T. L., Béchade, C., D’Andrea, I., St-Pierre, M.-K., Henry, M. S., Roumier, A., & Tremblay, M.-E. (2018). Microglia gone rogue: Impacts on psychiatric disorders across the lifespan. Frontiers in Molecular Neuroscience, 10, 421. https://doi.org/10.3389/fnmol.2017.00421
  • Tertil, M., Skupio, U., Barut, J., Dubovyk, V., Wawrzczak-Bargiela, A., Soltys, Z., Golda, S., Kudla, L., Wiktorowska, L., Szklarczyk, K., Korostynski, M., Przewlocki, R., & Slezak, M. (2018). Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Translational Psychiatry, 8(1), 255. https://doi.org/10.1038/s41398-018-0300-x
  • Tsuda, M. C., Yamaguchi, N., & Ogawa, S. (2011). Early life stress disrupts peripubertal development of aggression in male mice. Neuroreport, 22(6):, 259–263. https://doi.org/10.1097/WNR.0b013e328344495a
  • Tyagi, V., Scordo, M., Yoon, R. S., Liporace, F. A., & Greene, L. W. (2017). Revisiting the role of testosterone: Are we missing something? Reviews in Urology, 19(1), 16–24.
  • Tynan, R. J., Beynon, S. B., Hinwood, M., Johnson, S. J., Nilsson, M., Woods, J. J., & Walker, F. R. (2013). Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathologica, 126(1), 75–91. https://doi.org/10.1007/s00401-013-1102-0
  • Tynan, R. J., Naicker, S., Hinwood, M., Nalivaiko, E., Buller, K. M., Pow, D. V., Day, T. A., & Walker, F. R. (2010). Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain, Behavior, and Immunity, 24(7), 1058–1068. https://doi.org/10.1016/j.bbi.2010.02.001
  • Ueno, H., Suemitsu, S., Murakami, S., Kitamura, N., Wani, K., Matsumoto, Y., Okamoto, M., Aoki, S., & Ishihara, T. (2018). Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neuroscience, 19(1), 41. https://doi.org/10.1186/s12868-018-0442-z
  • Vallée, M., Rivera, J. D., Koob, G. F., Purdy, R. H., & Fitzgerald, R. L. (2000). Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Analytical Biochemistry, 287(1), 153–166. https://doi.org/10.1006/abio.2000.4841
  • Vallée, M., Vitiello, S., Bellocchio, L., Hébert-Chatelain, E., Monlezun, S., Martin-Garcia, E., Kasanetz, F., Baillie, G. L., Panin, F., Cathala, A., Roullot-Lacarrière, V., Fabre, S., Hurst, D. P., Lynch, D. L., Shore, D. M., Deroche-Gamonet, V., Spampinato, U., Revest, J. M., Maldonado, R., … Piazza, P. V. (2014). Pregnenolone can protect the brain from cannabis intoxication. Science, 343(6166), 94–98. https://doi.org/10.1126/science.1243985
  • Van Belle, S. (2017). Cortisol and other glucocorticoids. In Agustín Fuentes (Ed.), The international encyclopedia of primatology (pp. 1-5). Hoboken, NJ: Wiley.
  • Walf, A. A., & Frye, C. A. (2012). Gestational or acute restraint in adulthood reduces levels of 5α-reduced testosterone metabolites in the hippocampus and produces behavioral inhibition of adult male rats. Frontiers in Cellular Neuroscience, 6, 40. https://doi.org/10.3389/fncel.2012.00040
  • Wang, M. (2011). Neurosteroids and GABA-A receptor function. Frontiers in Endocrinology, 2, 44. https://doi.org/10.3389/fendo.2011.00044
  • Watanabe, Y., Gould, E., & McEwen, B. S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588(2), 341–345. https://doi.org/10.1016/0006-8993(92)91597-8
  • Wieland, S., Lan, N. C., Mirasedeghi, S., & Gee, K. W. (1991). Anxiolytic activity of the progesterone metabolite 5 alpha-pregnan-3 alpha-o1-20-one. Brain Research, 565(2), 263–268. https://doi.org/10.1016/0006-8993(91)91658-n
  • Wiktorowska, L., Bilecki, W., Tertil, M., Kudla, L., Szumiec, L., Mackowiak, M., & Przewlocki, R. (2021). Knockdown of the astrocytic glucocorticoid receptor in the central nucleus of the amygdala diminishes conditioned fear expression and anxiety. Behavioural Brain Research, 402, 113095. https://doi.org/10.1016/j.bbr.2020.113095
  • Wingert, J. C., & Sorg, B. A. (2021). Impact of perineuronal nets on electrophysiology of parvalbumin interneurons, principal neurons, and brain oscillations: A review. Frontiers in Synaptic Neuroscience, 13, 673210. https://doi.org/10.3389/fnsyn.2021.673210
  • Wohleb, E. S., Hanke, M. L., Corona, A. W., Powell, N. D., Stiner, L. M., Bailey, M. T., Nelson, R. J., Godbout, J. P., & Sheridan, J. F. (2011). β-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. The Journal of Neuroscience, 31(17), 6277–6288. https://doi.org/10.1523/JNEUROSCI.0450-11.2011
  • Woolley, C. S., Gould, E., Frankfurt, M., & McEwen, B. S. (1990). Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. The Journal of Neuroscience, 10(12), 4035–4039. https://doi.org/10.1523/JNEUROSCI.10-12-04035.1990
  • Xia et al., 2013: Xia, L., Zhai, M., Wang, L., Miao, D., Zhu, X., & Wang, W. (2013). FGF2 blocks PTSD symptoms via an astrocyte-based mechanism. Behavioural brain research, 256, 472–480.
  • Xu, B., Zhang, X., He, Y., Liu, C., Li, L., Liu, Q., Huang, Y., Chen, M., Ren, B., Guo, Y., & Chen, Y. (2022). The impacts of early-life adversity on striatal and hippocampal memory functions. Neuroscience, 490, 11–24. https://doi.org/10.1016/j.neuroscience.2022.02.029
  • Yamawaki, Y., Nishida, M., Harada, K., & Akagi, H. (2018). Data on the effect of maternal separation coupled with social isolation in a forced swim test and gene expression of glial fibrillary acid protein in the PFC of rats. Data in Brief, 18, 496–500. https://doi.org/10.1016/j.dib.2018.03.055
  • Yehuda, R., Bierer, L. M., Andrew, R., Schmeidler, J., & Seckl, J. R. (2009). Enduring effects of severe developmental adversity, including nutritional deprivation, on cortisol metabolism in aging Holocaust survivors. Journal of Psychiatric Research, 43(9), 877–883. https://doi.org/10.1016/j.jpsychires.2008.12.003
  • Yirmiya, R., Rimmerman, N., & Reshef, R. (2015). Depression as a microglial disease. Trends in Neurosciences, 38(10), 637–658. https://doi.org/10.1016/j.tins.2015.08.001
  • Yoshizawa, K., Okumura, A., Nakashima, K., Sato, T., & Higashi, T. (2017). Role of allopregnanolone biosynthesis in acute stress-induced anxiety-like behaviors in mice. Synapse, 71(8), e21978. https://doi.org/10.1002/syn.21978
  • Yu, Z., Chen, N., Hu, D., Chen, W., Yuan, Y., Meng, S., Zhang, W., Lu, L., Han, Y., & Shi, J. (2020). Decreased density of perineuronal net in prelimbic cortex is linked to depressive-like behavior in young-aged rats. Frontiers in Molecular Neuroscience, 13, 4. https://doi.org/10.3389/fnmol.2020.00004
  • Zucker, T. P., Higashiura, K., Mathur, R. S., & Halushka, P. V. (1996). Androstenedione increases thromboxane A2 receptors in human erythroleukemia cells. Life Sciences, 58(8), 683–690. https://doi.org/10.1016/s0024-3205(96)80007-5