Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 11, 2008 - Issue 4
205
Views
10
CrossRef citations to date
0
Altmetric
Original

Differential sensitisation to central cardiovascular effects of angiotensin II in rats with a myocardial infarct: Relevance to stress and interaction with vasopressin

, , , , , & show all
Pages 290-301 | Received 24 Jul 2007, Accepted 06 Nov 2007, Published online: 07 Jul 2009

References

  • Armando I, Terron JA, Falcon-Neri A, Takeshi I, Hauser W, Inagami T, Saavedra JM. Increased angiotensin II AT(1) receptor expression in paraventricular nucleus and hypothalamic-pituitary-adrenal axis stimulation in AT(2) receptor gene disrupted mice. Neuroendocrinology 2002; 76: 137–147
  • Bottari SP, De Gasparo M, Steckelings UM, Levens NR. Angiotensin II receptor subtypes: Characterization, signalling, mechanisms, and possible physiological implications. Front Neuroendocrinol 1993; 14: 123–171
  • Braszko JJ. AT2 but not AT1 receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res 2002; 131: 79–86
  • Cameron V, Espiner EA, Nicholls MG, Donald RA, Mac Farlane MR. Stress hormones in blood and cerebrospinal fluid of conscious sheep: Effect of hemorrhage. Endocrinology 1985; 116: 1460–1465
  • Carrasco GA, Van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol 2003; 463: 235–272
  • Cowley AW, Jr., Quillen EW, Jr., Skelton MM. Role of vasopressin in cardiovascular regulation. Fed Proc 1983; 42: 3170–3176
  • Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Dobruch J, Morton M, Koperski Ł, Wasiutynski A, Wsół A, Kowalewski S. Fluid consumption, electrolyte excretion and heart remodeling in rats with myocardial infarct maintained on regular and high sodium intake. J Physiol Pharmacol 2005; 56: 599–610
  • Cudnoch-Jedrzejewska A, Dobruch J, Puchalska L, Szczepanska-Sadowska E. Interaction of AT1 receptors and V1a receptors-mediated effects in the central cardiovascular control during the post-infarct state. Regul Pept 2007; 142: 86–94
  • Curran-Everett D, Benos DJ. Guidelines for reporting statistics in journals published by the American Physiological Society. Physiol Genomics 2004; 18: 249–251
  • Demotes-Mainard J, Chauveau J, Rodriguez F, Vincent JD, Poulain DA. Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Res 1986; 381: 314–321
  • DiBona GF. Central sympathoexcitatory actions of angiotensin II: Role of type 1 angiotensin II receptors. J Am Soc Nephrol 1999; 11: S90–S94
  • Dobruch J, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E. Enhanced involvement of brain vasopressin V1 receptors in cardiovascular responses to stress in rats with myocardial infarction. Stress 2005; 8: 273–284
  • Dumont EC, Rafrafi S, Laforest S, Drolet G. Involvement of central angiotensin receptors in stress adaptation. Neuroscience 1999; 93: 877–884
  • Fitzsimons JT. The physiology of thirst and sodium appetite. Cambridge University Press, Cambridge 1979; 128–265
  • Francis J, Zhang ZH, Weiss RM, Felder R. Neural regulation of the proinflamatory cytokine response to acute myocardial infarction. Am J Physiol Heart Circ Physiol 2004; 287: H791–H797
  • Ganten D, Unger T, Lang RE. The dual role of angiotensin and vasopressin as plasma hormones and neuropeptides in cardiovascular regulation. J Pharmacol 1985; 16(suppl II)51–68
  • Haack D, Mőhring J. Vasopressin-mediated blood pressure response to intraventricular injection of angiotensin II in the rat. Pflügers Arch 1978; 373: 167–173
  • Hogarty DC, Tran DN, Phillips MI. Involvement of angiotensin receptor subtypes in osmotically induced release of vasopressin. Brain Res 1994; 637: 126–132
  • Janiak P, Kasson BG, Brody MJ. Central vasopressin raises arterial pressure by sympathetic activation and vasopressin release. Hypertension 1989; 13: 935–940
  • Kagiyama S, Varela A, Phillips MI, Galli SM. Antisense inhibition of brain rennin-angiotensin system decreased blood pressure in chronic 2-kidney, 1 clip hypertensive rats. Hypertension 2001; 37: 371–375
  • Kovacs KJ, Sawchenko PE. Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 1996; 16: 262–273
  • Kubo T, Yamaguchi H, Tsujimura M, Hagiwara Y, Fukumori R. Angiotensin system in the anterior hypothalamic area is involved in the maintenance of hypertension in spontaneously hypertensive rats. Brain Res Bull 2000; 52: 291–296
  • Landgraf R. The involvement of the vasopressin system in stress-related disorders. CNS Neurol Disord Drug Targets 2006; 5: 167–179
  • Lee MA, Bohm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol 1996; 270: E919–E929
  • Leenen FHH, Yuan B, Huang BS. Brain “ouabain” and angiotensin II contribute to cardiac dysfunction after myocardial infarction. Am J Physiol Heart Circ Physiol 1999; 277: H1786–H1792
  • Łoń S, Szczepańska-Sadowska E, Szczypaczewska M. Evidence that centrally released arginine vasopressin is involved in central pressor action of angiotensin II. Am J Physiol Heart Circ Physiol 1996; 270: H167–H173
  • Ludbrook J. Repeated measurements and multiple comparisons in cardiovascular research. Cardiovasc Res 1994; 28: 303–311
  • Martin SM, Malkinson TJ, Veale WL, Pittman QJ. The action of centrally administered arginine vasopressin on blood pressure in the conscious rabbits. Brain Res 1985; 348: 137–145
  • Mayorov DN, Head GA. AT1 receptors in the RVLM mediate pressor responses to emotional stress in rabbits. Hypertension 2003; 41: 1168–1173
  • Mayorov DN, Head GA, De Matteo R. Tempol attenuates excitatory actions of angiotensin II in the rostral ventrolateral medulla during emotional stress. Hypertension 2004; 44: 101–106
  • Muders F, Riegger GA, Bahner U, Palkovits M. The central vasopressinergic system in experimental left ventricular hypertrophy and dysfunction. Prog Brain Res 2002; 139: 275–279
  • Noszczyk B, Łoń S, Szczepańska-Sadowska E. Central cardiovascular effects of AVP and AVP analogs with V1, V2 and “V3” agonistic or antagonistic properties in conscious dog. Brain Res 1993; 610: 115–126
  • Paczwa P, Budzikowski AS, Szczepańska-Sadowska E. Enhancement of central pressor effect of AVP in SHR and WKY rats by intracranial N(G)-nitro-l-arginine. Brain Res 1997; 748: 51–61
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Academic Press, New York 1986
  • Pittman QJ, Lawrence D, McLean L. Central effects of arginine vasopressin on blood pressure in rats. Endocrinology 1982; 110: 1058–1060
  • Robinson MM, McLean GP, Thurnhorst RL, Johnson AK. Interactions of the systemic and brain renin–angiotensin systems in the control of drinking and the central mediation of pressor responses. Brain Res 1999; 842: 55–61
  • Saad WA, Camargo LA. Influence of angiotensin II receptor subtypes of the paraventricular nucleus on the physiological responses induced by angiotensin II injection into the medial septal area. Arq Bras Cardiol 2003; 80: 396–405
  • Saavedra JM, Ando H, Armando I, Baiardi G, Bregonzio C, Juorio A, Macova M. Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regul Pept 2005; 128: 227–238
  • Saavedra JM, Armando I, Bregonzio C, Juorio A, Macova M, Pavel J, Sanchez-Lemus E. A centrally acting anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF1 receptor and benzodiazepine binding. Neuropsychopharmacology 2006; 31: 1123–1134
  • Selye H, Bajusz E, Grasso S, Mendell P. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 1960; 11: 398–407
  • Szczepanska-Sadowska E. Neuropeptides in neurogenic disorders of the cardiovascular control. J Physiol Pharmacol 2006; 57(suppl 11)31–59
  • Szczepanska-Sadowska E, Gray D, Simon-Oppermann C. Vasopressin in blood and third ventricle CSF during dehydration, thirst, and hemorrhage. Am J Physiol 1983; 245: R549–R555
  • Szczepanska-Sadowska E, Paczwa P, Łoń S, Ganten D. Increased pressor function of central vasopressinergic system in hypertensive renin transgenic rats. J Hypertens 1998; 16: 1505–1514
  • Tan J, Wang H, Leenen FHH. Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. Am J Physiol Heart Circ Physiol 2004; 286: H1665–H1671
  • Toney GM, Porter JP. Effects of blockade of AT1 and AT2 receptors in brain on the central angiotensin II pressor response in conscious spontaneously hypertensive rats. Neuropharmacology 1993; 32: 581–589
  • Ufnal M, Dudek M, Żera T, Szczepanska-Sadowska E. Centrally administered interleukin-1beta sensitizes to the central pressor action of angiotensin II. Brain Res 2006; 1100: 64–72
  • Veltmar A, Culman J, Qadri F, Rascher W, Unger T. Involvement of adrenergic and angiotensinergic receptors in the paraventricular nucleus in the angiotensin II-induced vasopressin release. J Pharmacol Exp Ther 1992; 263: 1253–1260
  • Wang W, Ma R. Cardiac sympathetic afferent reflexes in heart failure. Heart Fail Rev 2000; 5: 57–71
  • Winer BJ, Brown DR, Michels KM. Statistical principles in experimental Design. McGraw-Hill, Inc, New York 1991; 1–1057
  • Wright J, Harding JW. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev 1998; 18: 21–53
  • Wright J, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning and memory. Progr Neurobiol 2004; 72: 263–293
  • Żera T, Ufnal M, Szczepanska-Sadowska E. Tumor necrosis factor-alpha sensitizes to pressor action of centrally administered angiotensin II. J Physiol Pharmacol 2006; 57(suppl 2)253
  • Zhang W, Huang BS, Leenen FHH. Brain renin-angiotensin system and sympathetic hyperactivity in rats after myocardial infarction. Am J Physiol Heart Circ Physiol 1999; 276: H1608–H1615
  • Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W, Zucker IH, Wang W. ANG II in the paraventricular nucleus potentates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol 2004; 97: 1746–1754
  • Zucker IH, Schultz HD, Li Y-F, Wang Y, Wang W, Patel KP. The origin of sympathetic outflow in heart failure: The role of angiotensin II and nitric oxide. Progr Biophys Mol Biol 2004; 84: 217–232

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.