242
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical analysis of the effects of ossicular chain malformations on bone conduction stimulation

, , , , &
Pages 817-830 | Received 21 Aug 2020, Accepted 16 Nov 2020, Published online: 30 Nov 2020

References

  • Ahmad I, Pahor AL. 2002. Carhart's notch: a finding in otitis media with effusion. Int J Pediatr Otorhinolaryngol. 64(2):165–170.
  • Aibara R, Welsh JT, Puria S, Goode RL. 2001. Human middle-ear sound transfer function and cochlear input impedance. Hear Res. 152(1-2):100–109.
  • Ball GR. 2010. The vibrant soundbridge: design and development. Adv Otorhinolaryngol. 201069:1–13.
  • Böhnke F, Arnold W. 2006. Bone conduction in a three-dimensional model of the cochlea. ORL J Otorhinolaryngol Relat Spec. 68(6):393–396.
  • Böhnke F, Arnold WJO. 1999. 3D-finite element model of the human cochlea including fluid-structure couplings. ORL J Otorhinolaryngol Relat Spec. 61(5):305–310.
  • Brinkman W, Marres E, Tolk J. 1965. The mechanism of bone conduction: An experimental study. Acta Oto-Laryngol. 59(2–6):109–115.
  • Chang Y, Kim N, Stenfelt S. 2018. Simulation of the power transmission of bone-conducted sound in a finite-element model of the human head. Biomech Model Mechanobiol. 17(6):1741–1755.
  • Chen J, Huang Q, Wu X. 2016. Frequency importance function of the speech intelligibility index for Mandarin Chinese. Speech Commun. 83:94–103.
  • Chien W, Rosowski JJ, Ravicz ME, Rauch SD, Smullen J, Merchant SN. 2009. Measurements of stapes velocity in live human ears. Hear Res. 249(1/2):54–61.
  • Clmeis JD. 1968. Recent radiographic and clinical observations on the vestibular aqueduct. Otolaryngol Clin North Am. 1:339–346.
  • Dirks DD, Malmquist CM. 1969. Comparison of frontal and mastoid bone-conduction thresholds in various conductive lesions. J Speech Hear Res. 12(4):725–746.
  • Dobrev I, Farahmandi TS, Röösli C. 2020a. Experimental investigation of the effect of middle ear in bone conduction. Hear Res. 395:108041
  • Dobrev I, Farahmandi TS, Sim JH, Pfiffner F, Huber AM, Röösli C. 2020b. Dependence of skull surface wave propagation on stimulation sites and direction under bone conduction. J Acoust Soc Am. 147(3):1985–2001.
  • Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH. 2018. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Hear Res. 367:17–31.
  • Fuchsmann C, Tringali S, Disant F, Buiret G, Dubreuil C, Froehlich P, Truy E-l. 2010. Hearing rehabilitation in congenital aural atresia using the bone-anchored hearing aid: audiological and satisfaction results. Acta Otolaryngol. 130(12):1343–1351.
  • Funasaka S. 1979. Congenital ossicular anomalies without malformations of the external ear. Arch Otorhinolaryngol. 224(3/4):231–240.
  • Gan RZ, Cheng T, Dai C, Yang F, Wood MW. 2009. Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am. 126(1):243–253.
  • Gan RZ, Sun Q, Feng B, Wood MW. 2006. Acoustic-structural coupled finite element analysis for sound transmission in human ear-pressure distributions. Med Eng Phys. 28(5):395–404.
  • Gentil F, Parente M, Martins P, Santos C, Almeida E, Ferreira A, Natali R. 2015. Numerical study of Hough technique in surgery of otosclerosis, using the finite element method. Acta Bioeng Biomech. 17:149–153.
  • Gentil F, Parente M, Martins P, Garbe C, Jorge RN, Ferreira A, Tavares JMRS. 2011. The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis. Proc Inst Mech Eng H. 225(1):68–76.
  • Gopen Q, Rosowski JJ, Merchant SN. 1997. Anatomy of the normal human cochlear aqueduct with functional implications. Hear Res. 107(1/2):9–22.
  • Hodgetts WE, Scollie SD. 2017. DSL prescriptive targets for bone conduction devices: Adaptation and comparison to clinical fittings. Int J Audiol. 56(7):521–530.
  • Homma K, Du Y, Shimizu Y, Puria S. 2009. Ossicular resonance modes of the human middle ear for bone and air conduction. J Acoust Soc Am. 125(2):968–979.
  • Hong E-P, Kim M-K, Park I-Y, Lee S-h, Roh Y, Cho J-H. 2007. Vibration modeling and design of piezoelectric floating mass transducer for implantable middle ear hearing devices. IEICE Trans Fundam Electron Commun Comput Sci. E90-A(8):1620–1627.
  • House HP. 1959. Congenital stapes footplate fixation; a preliminary report of twenty-six operated cases. Acta Otolaryngol. 50(1):69–70.
  • Kim N, Homma K, Puria S. 2011. Inertial bone conduction: symmetric and anti-symmetric components. J Assoc Res Otolaryngol. 12(3):261–279.
  • Kringlebotn M, Gundersen T, Krokstad A, Skarstein O. 1978. Noise-induced hearing losses: can they be explained by basilar membrane movement? Acta Oto-Laryngol. 86(sup360):98–101.
  • Liu H, Cheng J, Yang J, Rao Z, Cheng G, Yang S, Huang X, Wang M. 2017. Concept and evaluation of a new piezoelectric transducer for an implantable middle ear hearing device. Sensors. 17(11):2515.
  • Liu H, Wang W, Zhao Y, Yang J, Yang S, Huang X, Liu W. 2020. Effect of stimulation sites on the performance of electromagnetic middle ear implant: a finite element analysis. Comput Biol Med. 124:103918
  • Liu H, Zhao Y, Yang J, Rao Z. 2019. The Influence of piezoelectric transducer stimulating sites on the performance of implantable middle ear hearing devices: a numerical analysis. Micromachines. 10:782.
  • Lustig LR, Arts HA, Brackmann DE, Francis HF, Molony T, Megerian CA, Moore GF, Moore KM, Morrow T, Potsic W, et al. 2001. Hearing rehabilitation using the BAHA bone-anchored hearing aid: results in 40 patients. Otol Neurotol. 22(3):328–334.,
  • Mansour S, Magnan J, Nicolas K, Haidar H. 2018. Middle ear diseases: advances in diagnosis and management. Cham: Springer. Chapter 10, Diagnosis and clinico-radiologic correlations in conductive hearing loss with a normal appearing tympanic membrane; p. 415–467.
  • Merchant SN, Ravicz ME, Rosowski JJ. 1996. Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear Res. 97(1/2):30–45.
  • Nakajima HH, Merchant SN, Rosowski JJ. 2010. Performance considerations of prosthetic actuators for round-window stimulation. Hear Res. 263(1/2):114–119.
  • O'Connor KN, Cai H, Puria S. 2017. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model. J Acoust Soc Am. 142(5):2836–2853.
  • Park K, Choung Y-H. 2009. Isolated congenital ossicular anomalies. Acta Otolaryngol. 129(4):419–422.
  • Pfiffner F, Kompis M, Stieger C. 2009. Bone-anchored hearing aids: correlation between pure-tone thresholds and outcome in three user groups. Otol Neurotol. 30(7):884–890.
  • Rusinek R. 2020. Sound transmission in the first nonlinear model of middle ear with an active implant. Math Probl Eng. 2020:4580467.
  • Shin D, Seong K, Nakajima H, Puria S, Cho JH. 2020. A piezoelectric bellows round-window driver (PBRD) for middle-ear implants. IEEE Access. 8:137947–137954.
  • Stenfelt S. 2011. Acoustic and physiologic aspects of bone conduction hearing. Adv Otorhinolaryngol. 71:10–21.
  • Stenfelt S. 2015. Inner ear contribution to bone conduction hearing in the human. Hear Res. 329:41–51.
  • Stenfelt S, Goode RL. 2005. Transmission properties of bone conducted sound: measurements in cadaver heads. J Acoust Soc Am. 118(4):2373–2391.
  • Stenfelt S, Hato N, Goode RL. 2002. Factors contributing to bone conduction: the middle ear. J Acoust Soc Am. 111(2):947–959.
  • Stenfelt S, Puria S, Hato N, Goode RL. 2003. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hear Res. 181(1-2):131–143.
  • Sadowski AJ, Rotter JM. 2013. Solid or shell finite elements to model thick cylindrical tubes and shells under global bending. Int J Mech Sci. 74:143–153.
  • Stieger C, Guan X, Farahmand RB, Page BF, Merchant JP, Abur D, Nakajima HH. 2018. Intracochlear sound pressure measurements in normal human temporal bones during bone conduction stimulation. J Assoc Res Otolaryngol. 19(5):523–539.
  • Stieger C, Rosowski JJ, Nakajima HH. 2013. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea. Hear Res. 301:105–114.
  • Sun Q, Gan R, Chang K-H, Dormer K. 2002. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol. 1(2):109–122.
  • Teunissen E, Cremers CW. 1993. Surgery for congenital anomalies of the middle ear with mobile stapes. Eur Arch Otorhinolaryngol. 250(6):327–331.
  • Von Békésy G, Wever EG. 1960. Experiments in hearing. New York: McGraw-Hill.
  • Wang X, Wang L, Zhou J, Hu Y. 2014. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea. Comput Methods Biomech Biomed Engin. 17(10):1096–1107.
  • Yao W, Guo C, Luo X. 2013. Study on effects of partial ossicular replacement prostheses with different materials on hearing restoration. J Mater Sci Mater Med. 24(2):515–522.
  • Zhao F, Koike T, Wang J, Sienz H, Meredith R. 2009. Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys. 31(8):907–916.
  • Zhang X, Gan RZ. 2011. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng. 58(10):3024–3027.
  • Zhang J, Tian J, Ta N, Rao Z. 2019a. Finite element analysis of round-window stimulation of the cochlea in patients with stapedial otosclerosis. J Acoust Soc Am. 146(6):4122–4130.
  • Zhang J, Zou D, Tian J, Ta N, Rao Z. 2019b. A comparative finite-element analysis of acoustic transmission in human cochlea during forward and reverse stimulations. Appl Acoust. 145:278–289.
  • Zhou L, Shen N, Feng M, Liu H, Duan M, Huang X. 2019. Study of age-related changes in Middle ear transfer function. Comput Methods Biomech Biomed Eng. 22(13):1093–1102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.