277
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of ossicular chain deformity on reverse stimulation considering the overflow characteristics of third windows

, ORCID Icon, , , &
Pages 257-272 | Received 02 Feb 2021, Accepted 22 Jun 2021, Published online: 07 Jul 2021

References

  • Angeli SI, Yan D, Telischi F, Balkany TJ, Ouyang XM, Du LL, Eshraghi A, Goodwin L, Liu XZ. 2005. Etiologic diagnosis of sensorineural hearing loss in adults. Otolaryngol Head Neck Surg. 132(6):890–895.
  • Chen Y, Yao W. 2016. Mechanical model of round window membrane under reverse excitation. Appl Math Mech-Engl Ed. 37(10):1341–1348.
  • Colletti L, Mandala M, Colletti V. 2013. Long-term outcome of round window vibrant soundbridge implantation in extensive ossicular chain defects. Otolaryngol Head Neck Surg. 149(1):134–141.
  • Colletti V, Soli SD, Carner M, Colletti L. 2006. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int J Audiol. 45(10):600–608.
  • Elliott SJ, Ni G, Verschuur CA. 2016. Modelling the effect of round window stiffness on residual hearing after cochlear implantation. Hear Res. 341:155–167.
  • Farmer-Fedor BL, Rabbitt RD. 2002. Acoustic intensity, impedance and reflection coefficient in the human ear canal. J Acoust Soc Am. 112(2):600–620.
  • Fields TN, Schnetzer L, Brister E, Yates CW, Withnell RH. 2018. An assessment of a conical horn waveguide to represent the human eardrum. J Phys D Appl Phys. 51(18):185401.
  • Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH. 2018. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Hear Res. 367:17–31.
  • Gopen Q, Rosowski JJ, Merchant SN. 1997. Anatomy of the normal human cochlear aqueduct with functional implications. Hear Res. 107(1–2):9–22.
  • Gostian AO, Pazen D, Ortmann M, Anagiotos A, Schwarz D, Hüttenbrink KB, Beutner D. 2016. Loads and coupling modalities influence the performance of the floating mass transducer as a round window driver. Otol Neurotol. 37(5):524–532.
  • Guan X, Cheng YS, Galaiya DJ, Rosowski JJ, Lee DJ, Nakajima HH. 2020. Bone-conduction hyperacusis induced by superior canal dehiscence in human: the underlying mechanism. Sci Rep. 10(1):1–11.
  • Hogan CA, Turner CW. 1998. High-frequency audibility: benefits for hearing-impaired listeners. J Acoust Soc Am. 104(1):432–441.
  • Hong E-P, Kim M-K, Park I-Y, Lee S-h, Roh Y, Cho J-H. 2007. Vibration modeling and design of piezoelectric floating mass transducer for implantable middle ear hearing devices. IEICE Trans Fundam Electron Commun Comput Sci. E90A(8):1620–1627.
  • Hopkins K, Moore BCJ. 2011. The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am. 130(1):334–349.
  • House HP, House WF, Hildyard VH. 1958. Congenital stapes footplate fixation: a preliminary report of twenty-three operated cases. Laryngoscope. 68(8):1389–1402.
  • Hudde H. 1983. Measurement of the eardrum impedance of human ears. J Acoust Soc Am. 73(1):242–247.
  • Keefe DH. 2015. Human middle-ear model with compound eardrum and airway branching in mastoid air cells. J Acoust Soc Am. 137(5):2698–2725.
  • Kringlebotn M. 1988. Network model for the human middle ear. Scand Audiol. 17(2):75–85.
  • Kringlebotn M. 1995. The equality of volume displacements in the inner ear windows. J Acoust Soc Am. 98(1):192–196.
  • Lewis JD, Neely ST. 2015. Non-invasive estimation of middle-ear input impedance and efficiency. J Acoust Soc Am. 138(2):977–993.
  • Liu H, Xu D, Yang J, Yang S, Cheng G, Huang X. 2017. Analysis of the influence of the transducer and its coupling layer on round window stimulation. Acta Bioeng Biomech. 19(2):103–111.
  • Liu H, Xue L, Yang J, Liu W, Yang S, Wang W. 2020. Modeling the effect of cochlear windows activity on reverse stimulation under the role of physiological third windows. Appl Acoust. 169:107473.
  • Liu H, Zhang H, Yang J, Huang X, Liu W, Xue L. 2019. Influence of ossicular chain malformation on the performance of round-window stimulation: a finite element approach. Proc Inst Mech Eng H. 233(5):584–594.
  • Liu HG, Wang WB, Zhao Y, Yang J, Yang S, Huang X, Liu W. 2020. Effect of stimulation sites on the performance of electromagnetic middle ear implant: a finite element analysis. Comput Biol Med. 124:103918.
  • Liu Y, Li S, Sun X. 2009. Numerical analysis of ossicular chain lesion of human ear. Acta Mech Sin. 25(2):241–247.
  • Lobato L, Paul S, Cordioli J, Cruz OLM. 2019. How stapes ankylosis and fracture affect middle ear dynamics: a numerical study. ASME J Biomech Eng. 141(11):111011.
  • Lupo JE, Koka K, Holland NJ, Jenkins HA, Tollin DJ. 2009. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation. Otol Neurotol. 30(8):1215–1224.
  • Maier H, Salcher R, Schwab B, Lenarz T. 2013. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator. Hear Res. 301:115–124.
  • Mansour S, Magnan J, Nicolas K, Haidar H. 2018. Middle ear diseases: advances in diagnosis and management. Cham: Springer.
  • Merchant GR, Merchant SN, Rosowski JJ, Nakajima HH. 2016. Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations. Hear Res. 341:19–30.
  • Moore BCJ. 2007. Cochlear hearing loss: physiological, psychological and technical issues. 2nd ed. Chichester: John Wiley & Sons.
  • Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski JJ. 2009. Differential intracochlear sound pressure measurements in normal human temporal bones. J Assoc Res Otolaryngol. 10(1):23–36.
  • Nakajima HH, Merchant SN, Rosowski JJ. 2010. Performance considerations of prosthetic actuators for round-window stimulation. Hear Res. 263(1–2):114–119.
  • Niesten MEF, Stieger C, Lee DJ, Merchant JP, Grolman W, Rosowski JJ, Nakajima HH. 2015. Assessment of the effects of superior canal dehiscence location and size on intracochlear sound pressures. Audiol Neurootol. 20(1):62–71.
  • O’Connor KN, Puria S. 2008. Middle-ear circuit model parameters based on a population of human ears. J Acoust Soc Am. 123(1):197–211.
  • Park K, Choung Y-H. 2009. Isolated congenital ossicular anomalies. Acta Oto-Laryngol. 129(4):419–422.
  • Puria S. 2003. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am. 113(5):2773–2789.
  • Rosowski JJ, Bowers P, Nakajima HH. 2018. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear. Hear Res. 360:3–13.
  • Rusinek R. 2021. Effect of transducer fixation in the human middle ear on sound transfer. Eur J Mech A-Solid. 85:104068.
  • Rusinek R, Kecik K. 2021. Effect of linear electromechanical coupling in nonlinear implanted human middle ear. Mech Syst Signal Pr. 151:107391.
  • Sackmann B, Dalhoff E, Lauxmann M. 2019. Model-based hearing diagnostics based on wideband tympanometry measurements utilizing fuzzy arithmetic. Hear Res. 378:126–138.
  • Sackmann B, Warnholtz B, Sim J, Burovikhin D, Dalhoff E, Eberhard P, Lauxmann M. 2020. Investigation of tympanic membrane influences on middle-ear impedance measurements and simulations. In Kecskeméthy A, Geu Flores F (Eds.), Multibody Dynamics 2019. European Congress on Computational Methods in Applied Sciences and Engineering; Cham: Springer. pp. 3–10.
  • Schraven SP, Hirt B, Goll E, Heyd A, Gummer AW, Zenner H-P, Dalhoff E. 2012. Conditions for highly efficient and reproducible round-window stimulation in humans. Audiol Neurotol. 17(2):133–138.
  • Shin DH, Seong KW, Puria S, Lee K-Y, Cho J-H. 2016. A tri-coil bellows-type round window transducer with improved frequency characteristics for middle-ear implants. Hear Res. 341:144–154.
  • Sprinzl GM, Wolf-Magele A, Schnabl J, Koci V. 2011. The active middle ear implant for the rehabilitation of sensorineural, mixed and conductive hearing losses. Laryngo-Rhino-Otol. 90(9):560–569.
  • Stenfelt S, Hato N, Goode RL. 2004. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J Acoust Soc Am. 115(2):797–812.
  • Stieger C, Rosowski JJ, Nakajima HH. 2013. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea. Hear Res. 301:105–114.
  • Tian J, Huang X, Rao Z, Ta N, Xu L. 2015. Finite element analysis of the effect of actuator coupling conditions on round window stimulation. J Mech Med Biol. 15(04):1550048.
  • Vincent R, Wegner I, Derks LSM, Grolman W. 2016. Congenital ossicular chain malformations with mobile stapes in children: Results in 17 cases. Laryngoscope. 126(3):682–688.
  • Voss SE, Allen JB. 1994. Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am. 95(1):372–384.
  • Voss SE, Rosowski JJ, Merchant SN, Peake WT. 2000. Acoustic responses of the human middle ear. Hear Res. 150(1–2):43–69.
  • Wang XL, Wang LL, Zhou JJ, Hu YJ. 2014. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea. Comput Methods Biomech Biomed Eng. 17(10):1096–1107.
  • Withnell RH, Gowdy LE. 2013. An analysis of the acoustic input impedance of the ear. J Assoc Res Otolaryngol. 14(5):611–622.
  • Xue L, Liu HG, Wang WB, Yang JH, Zhao Y, Huang XS. 2020. The role of third windows on human sound transmission of forward and reverse stimulations: a lumped-parameter approach. J Acoust Soc Am. 147(3):1478–1490.
  • Xue L, Liu HG, Yang JH, Liu SY, Zhao Y, Huang XS. 2021. Research on coupling effects of actuator and round window membrane on reverse stimulation of human cochlea. Proc Inst Mech Eng H. 235(4):447–458.
  • Zhang J, Tian JB, Ta N, Rao ZS. 2018. Transient response of the human ear to impulsive stimuli: a finite element analysis. J Acoust Soc Am. 143(5):2768–2779.
  • Zhang J, Tian JB, Ta N, Rao ZS. 2019. Finite element analysis of round-window stimulation of the cochlea in patients with stapedial otosclerosis. J Acoust Soc Am. 146(6):4122–4130.
  • Zhang J, Zou DL, Tian JB, Ta N, Rao ZS. 2019. A comparative finite-element analysis of acoustic transmission in human cochlea during forward and reverse stimulations. Appl Acoust. 145:278–289.
  • Zhang XM, Gan RZ. 2011. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng. 58(10):3024–3027.
  • Zhang XM, Gan RZ. 2013. Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res. 301:146–155.
  • Zhou L, Feng ML, Wang W, Tong H, Liu JP, Gao L, Huang XS. 2016. Study on the role of ossicular joint using finite element method. J Mech Med Biol. 16(04):1650041.
  • Zhou L, Shen N, Feng ML, Liu HG, Duan ML, Huang XS. 2019. Study of age-related changes in middle ear transfer function. Comput Methods Biomech Biomed Eng. 22(13):1093–1102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.