Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 22, 2019 - Issue 12
368
Views
11
CrossRef citations to date
0
Altmetric
Articles

Neuroprotective effect of tempeh against lipopolysaccharide-induced damage in BV-2 microglial cells

, , , & ORCID Icon

References

  • Feng XM, Passoth V, Eklund-Jonsson C, Alminger ML, Schnürer J. Rhizopus oligosporus and yeast co-cultivation during barley tempeh fermentation – nutritional impact and real-time PCR quantification of fungal growth dynamics. Food Microbiol 2007;24(4):393–402.
  • Truesdell DD, Nancy RG, Acosta PB. Vitamin B12 activity in miso and tempeh. J Food Sci 1987;52(2):493–4.
  • Nakajima N, Nozaki N, Ishihara K, Ishikawa A, Tsuji H. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. J Biosci Bioeng 2005;100(6):685–7.
  • Reyes-Bastidas M, Reyes-Fernández EZ, López-Cervantes J, Milán-Carrillo J, Loarca-Piña GF, Reyes-Moreno C. Physicochemical, nutritional and antioxidant properties of tempeh flour from common bean (Phaseolus vulgaris L.). Food Sci Technol Int 2010;16(5):427–34.
  • Mohd Yusof H, Ali NM, Yeap SK, Ho WY, Beh BK, Koh SP, et al. Hepatoprotective effect of fermented soybean (nutrient enriched soybean tempeh) against alcohol-induced liver damage in mice. Evid Based Complement Alternat Med 2013;2013 :274274.
  • Sapbamrer R, Visavarungroj N, Suttajit M. Effects of dietary traditional fermented soybean on reproductive hormones, lipids, and glucose among postmenopausal women in northern Thailand. Asia Pac J Clin Nutr 2013;22(2):222–8.
  • Utama Z, Okazaki Y, Tomotake H, Kato N. Tempe consumption modulates fecal secondary bile acids, mucins, immunoglobulin A, enzyme activities, and cecal microflora and organic acids in rats. Plant Foods Hum Nutr 2013;68(2):177–83.
  • Ishikawa K, Saito S. Effect of intraventricular gamma-aminobutyric acid (GABA) on discrimination learning in rats. Psychopharmacology (Berl) 1978;56(2):127–32.
  • Vemulapalli S, Barletta M. The role of the sympathetic nervous system in the cardiovascular effects of systemically administered gamma-aminobutyric acid. Arch Int Pharmacodyn Ther 1984;67(1):46–58.
  • Aoki H, Uda I, Tagami K, Furuya Y, Endo Y, Fujimoto K. The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem 2003;67(5):1018–23.
  • Murakami H, Asakawa T, Terao T, & Matsushitai S. Antioxidative stability of tempeh and liberation of isoflavones by fermentation. J Agric Food Chem 1984;48(12):2971–5.
  • Chang CT, Hsu CK, Chou ST, Chen YC, Huang FS, Chung YC. Effect of fermentation time on the antioxidant activities of tempeh prepared from fermented soybean using Rhizopus oligosporus. Food Sci Technol 2009;44(4):799–806.
  • Eaki H, Onozaki H, Kawakishi S, Osawa T. New antioxidant isolated from tempeh. J Agric Food Chem 1996;44(3):696–700.
  • Lin HY, Tang CH, Chen YH, Wei IH, Chen JH, Lai CH, et al. Peptidoglycan enhances proinflammatory cytokine expression through the TLR2 receptor, MyD88, phosphatidylinositol 3-kinase/AKT and NF-kappaB pathways in BV-2 microglia. Int Immunopharmacol 2010;10(8):883–91.
  • Cerbai F, Lana D, Nosi D, Petkova-Kirova P, Zecchi S, Brothers HM, et al. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS ONE 2012;7(9):e45250. doi:10.1371/journal.pone.0045250
  • Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection?. Lancet Neurol 2009;8(4):382–97.
  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. A Nurr1/ CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009;137(1):47–59.
  • Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 2017;14(1):99. doi:10.1186/s12974-017-0871-0.
  • Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS. Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010;41(2–3):232–41.
  • McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 2001;169(2):219–30.
  • Peng S, Wuu J, Mufson EJ, Fahnestock M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 2005;93(6):1412–21.
  • Balaratnasingam S, Janca A. Brain derived neurotrophic factor: a novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol Ther 2012;134(1):116–24.
  • Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 2001;63(1):71–124.
  • MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997;15:323–50.
  • Lyu SA, Lee SY, Lee SJ, Son SW, Kim MO, Kim GY, et al. Seungma-galgeun-tangattenuates proinflammatory activities through the inhibition of NF-kappaB signal pathway in the BV-2 microglial cells. J Ethnopharmacol 2006;107(1):59–66.
  • Hou RC, Chen HL, Tzen JT, Jeng KC. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells. Neuroreport 2003;14(14):1815–19.
  • Barnes S, Kirk M, Coward L. Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry. J Agric Food Chem 1994;42(11):2466–74.
  • Taga M, Miller E, Pratt D. Chia seeds as a source of natural lipid antioxidants. J Am Oil Chem Soc 1984;61(5):928–31.
  • Wrolstad RE, Culbertson JD, Cornwell CJ, Mattick LR. Detection of adulteration in blackberry juice concentrates and wines. J Assoc Off Anal Chem 1982;65(6):1417–23.
  • Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad RE, (ed.) Current protocos in food analytical chemistry. New York: John Wiley & Sons; 2001. Unit F1.2.1–1.
  • Zong Y, Sun L, Liu B, Deng YS, Zhan D, Chen YL, et al. Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS One 2012;7(8):e44107. doi:10.1371/journal.pone.0044107.
  • Poulose SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN, et al. Anthocyanin-rich ac ¸ai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem 2012;60(4):1084–93.
  • Park JS, Woo MS, Kim DH, Hyun JW, Kim WK, Lee JC, et al. Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide stimulated microglial cells. J Pharmacol Exp Ther 2007;320(3):1237–45.
  • Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox Res 2013;23(2):145–53.
  • Pereira SG, Oakley F. Nuclear factor-kappab1: regulation and function. Int J Biochem Cell Biol 2008;40(8):1425–30.
  • Vendrame S, Klimis-Zacas D. Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr Rev 2015;73(6):348–58.
  • Yu J, Bi X, Yu B, Chen D. Isoflavones: anti-inflammatory benefit and possible caveats. Nutrients 2016;8 (6):pii:E361. doi: 10.3390/nu8060361.
  • Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 2010;107(6):2580–5.
  • Reyes-García MG, Hernández-Hernández F, Hernández-Téllez B, García-Tamayo F. GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. J Neuroimmunol 2007;188(1–2):64–8.
  • Tian J, Lu Y, Zhang H, Chau CH, Dang HN, Kaufman DL. Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model. J Immunol 2004;173(8):5298–304.
  • Lee M, McGeer EG, McGeer PL. Mechanisms of GABA release from human astrocytes. Glia 2011;59(11):1600–11.
  • Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci USA 2011;108(28):11692–7.
  • Huang CY, Kuo WW, Wang HF, Lin CJ, Lin YM, Chen JL, et al. GABA tea ameliorates cerebral cortex apoptosis and autophagy in streptozotocin- induced diabetic rats. J Funct Foods 2014;6:534–44.
  • Gehrmann J. Microglia: a sensor to threats in the nervous system? Res Virol 1996;147(2–3):79–88.
  • Heese K, Hock C, Otten U. Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 1998;70(2):699–707.
  • Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995;374(6523):647–50.
  • Kapczinski F, Frey BN, Kauer-Sant’Anna M, Grassi-Oliveira R. Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder. Expert Rev Neurother 2008;8(7):1101–13.
  • Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 2000;127(21):4531–40.
  • Warnecke A, Sasse S, Wenzel GI, Hoffmann A, Gross G, Paasche G, et al. Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells in vitro and in vivo. Hear Res 2012;289(1–2):86–97.
  • Chalovich EM, Zhu JH, Caltagarone J, Bowser R, Chu CT. Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells. J Biol Chem 2006;281(26):17870–81.
  • Balanzá-Martínez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabarés-Seisdedos R, et al. Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother 2011;11(7):1029–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.