Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 3
636
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Curcumin and neurological diseases

ORCID Icon & ORCID Icon

References

  • Adami R, Scesa G, Bottai D. Stem cell transplantation in neurological diseases: improving effectiveness in animal models. Front Cell Dev Biol. 2014;2:17.
  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1–75.
  • Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as ‘curecumin’: from kitchen to clinic. Biochem Pharmacol. 2008 Feb 15;75(4):787–809.
  • Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, et al. Oral bioavailability of curcumin: Problems and advancements. J Drug Target. 2016 Sep;24(8):694–702.
  • Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev. 2002 Jan;11(1):105–11.
  • Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. 2007 Jul;60(2):171–7.
  • Lao CD, Ruffin M, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006 Mar 17;6(10). doi:https://doi.org/10.1186/1472-6882-6-10.
  • Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol. 2007;595:453–70.
  • Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr. 2007;47(8):735–48.
  • Teymouri M, Barati N, Pirro M, Sahebkar A. Biological and pharmacological evaluation of dimethoxycurcumin: a metabolically stable curcumin analogue with a promising therapeutic potential. J Cell Physiol. 2018 Jan;233(1):124–40.
  • Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. 2008 Feb;28(1):110–3.
  • Rakotoarisoa M, Angelova A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines (Basel. 2018 Nov 23;5(4). doi:https://doi.org/10.3390/medicines5040126.
  • Maiti P, Paladugu L, Dunbar GL. Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xfad mouse model of Alzheimer’s disease. BMC Neurosci. 2018 Feb 23;19(1):7.
  • Lazar AN, Mourtas S, Youssef I, Parizot C, Dauphin A, Delatour B, et al. Curcumin-conjugated nanoliposomes with high affinity for abeta deposits: possible applications to Alzheimer disease. Nanomedicine. 2013 Jul;9(5):712–21.
  • Yang L, Xie S, Jamaluddin MS, Altuwaijri S, Ni J, Kim E, et al. Induction of androgen receptor expression by phosphatidylinositol 3-kinase/akt downstream substrate, foxo3a, and their roles in apoptosis of lncap prostate cancer cells. J Biol Chem. 2005 Sep 30;280(39):33558–65.
  • Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors. 2013 Jan-Feb;39(1):37–55.
  • Vitaglione P, Barone Lumaga R, Ferracane R, Radetsky I, Mennella I, Schettino R, et al. Curcumin bioavailability from enriched bread: the effect of microencapsulated ingredients. J Agric Food Chem. 2012 Apr 4;60(13):3357–66.
  • Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014 Mar;58(3):516–27.
  • Kocher A, Schiborr C, Behnam D, Frank L. The oral bioavailability of curcuminoids inhealthy humans is markedly enhanced bymicellar solubilisation but not further improvedby simultaneous ingestion of sesamin,ferulic acid, naringenin and xanthohumol. J Funct Foods. 2015;14:189–91.
  • Storka A, Vcelar B, Klickovic U, Gouya G, Weisshaar S, Aschauer S, et al. Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther. 2015 Jan;53(1):54–65.
  • Asher GN, Xie Y, Moaddel R, Sanghvi M, Dossou KS, Kashuba AD, et al. Randomized pharmacokinetic crossover study comparing 2 curcumin preparations in plasma and rectal tissue of healthy human volunteers. J Clin Pharmacol. 2017 Feb;57(2):185–93.
  • Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res. 2012 Nov;43(8):600–8.
  • Dos Santos Picanco LC, Ozela PF, de Fatima de Brito Brito M, Pinheiro AA, Padilha EC, Braga FS, et al. Alzheimer’s disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr Med Chem. 2018;25(26):3141–59.
  • Ganguli M, Albanese E, Seshadri S, Bennett DA, Lyketsos C, Kukull WA, et al. Population neuroscience: dementia epidemiology serving precision medicine and population health. Alzheimer Dis Assoc Disord. 2018 Jan-Mar;32(1):1–9.
  • Alves L, Correia AS, Miguel R, Alegria P, Bugalho P. Alzheimer’s disease: a clinical practice-oriented review. Front Neurol. 2012;3(63). doi:https://doi.org/10.3389/fneur.2012.00063.
  • Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010 Jan-Feb;77(1):32–42.
  • Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of beta-amyloid induced tau-pathology: the long and ‘folded’ road to understand the mechanism. Mol Neurodegener. 2014 Nov 18;9(51). doi:https://doi.org/10.1186/1750-1326-9-51.
  • Zhu L, Zhong M, Elder GA, Sano M, Holtzman DM, Gandy S, et al. Phospholipid dysregulation contributes to apoe4-associated cognitive deficits in Alzheimer’s disease pathogenesis. Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11965–70.
  • Kunz L, Schroder TN, Lee H, Montag C, Lachmann B, Sariyska R, et al. Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science. 2015 Oct 23;350(6259):430–3.
  • Forestier A, Douki T, De Rosa V, Beal D, Rachidi W. Combination of abeta secretion and oxidative stress in an Alzheimer-like cell line leads to the over-expression of the nucleotide excision repair proteins ddb2 and xpc. Int J Mol Sci. 2015 Jul 30;16(8):17422–44.
  • Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, et al. Monoamine oxidase b is elevated in Alzheimer disease neurons, is associated with gamma-secretase and regulates neuronal amyloid beta-peptide levels. Alzheimers Res Ther. 2017 Aug 1;9(1):57.
  • Goozee KG, Shah TM, Sohrabi HR, Rainey-Smith SR, Brown B, Verdile G, et al. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br J Nutr. 2016 Feb 14;115(3):449–65.
  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007 Aug;102(4):1095–104.
  • Tu P, Fu H, Cui M. Compounds for imaging amyloid-beta deposits in an Alzheimer’s brain: a patent review. Expert Opin Ther Pat. 2015 Apr;25(4):413–23.
  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005 Feb 18;280(7):5892–901.
  • Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, et al. Protective effects of Indian spice curcumin against amyloid-beta in Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):843–66.
  • Park SY, Kim DS. Discovery of natural products from curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease. J Nat Prod. 2002 Sep;65(9):1227–31.
  • Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res. 2004 Mar 15;75(6):742–50.
  • Kim DS, Park SY, Kim JK. Curcuminoids from curcuma longa l. (zingiberaceae) that protect pc12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaa(1-42) insult. Neurosci Lett. 2001 Apr 27;303(1):57–61.
  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001 Nov 1;21(21):8370–7.
  • Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Kandimalla R, et al. Protective effects of a natural product, curcumin, against amyloid beta induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J Investig Med. 2016 Dec;64(8):1220–34.
  • Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (gsk3): inflammation, diseases, and therapeutics. Neurochem Res. 2007 Apr-May;32(4-5):577–95.
  • Di Martino RM, De Simone A, Andrisano V, Bisignano P, Bisi A, Gobbi S, et al. Versatility of the curcumin scaffold: discovery of potent and balanced dual bace-1 and gsk-3beta inhibitors. J Med Chem. 2016 Jan 28;59(2):531–44.
  • Bottai D, Adami R, Paroni R, Ghidoni R. Brain cancer-activated microglia: a potential role for sphingolipids. Curr Med Chem. 2019 May 6. doi:https://doi.org/10.2174/0929867326666190506120213.
  • Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014 May;124(5):307–21.
  • Shi X, Zheng Z, Li J, Xiao Z, Qi W, Zhang A, et al. Curcumin inhibits abeta-induced microglial inflammatory responses in vitro: involvement of erk1/2 and p38 signaling pathways. Neurosci Lett. 2015 May 6;594:105–10.
  • Tang M, Taghibiglou C. The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis. 2017;58(4):1003–16.
  • Bassani TB, Turnes JM, Moura ELR, Bonato JM, Coppola-Segovia V, Zanata SM, et al. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav Brain Res. 2017 Sep 29;335:41–54.
  • Liu ZJ, Li ZH, Liu L, Tang WX, Wang Y, Dong MR, et al. Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease. Front Pharmacol. 2016;7:261.
  • Baum L, Cheung SK, Mok VC, Lam LC, Leung VP, Hui E, et al. Curcumin effects on blood lipid profile in a 6-month human study. Pharmacol Res. 2007 Dec;56(6):509–14.
  • Sanei M, Saberi-Demneh A. Effect of curcumin on memory impairment: a systematic review. Phytomedicine. 2019 Jan;52:98–106.
  • Fiala M, Liu PT, Espinosa-Jeffrey A, Rosenthal MJ, Bernard G, Ringman JM, et al. Innate immunity and transcription of mgat-iii and toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12849–54.
  • Brondino N, Re S, Boldrini A, Cuccomarino A, Lanati N, Barale F, et al. Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies. ScientificWorldJournal. 2014;2014:174282.
  • Zhu LN, Mei X, Zhang ZG, Xie YP, Lang F. Curcumin intervention for cognitive function in different types of people: a systematic review and meta-analysis. Phytother Res. 2019 Mar;33(3):524–33.
  • Manyam BV, Sanchez-Ramos JR. Traditional and complementary therapies in Parkinson’s disease. Adv Neurol. 1999;80:565–74.
  • Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna. 2017 Aug;124(8):901–5.
  • Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H. Parkinson’s disease: cause factors, measurable indicators, and early diagnosis. Comput Biol Med. 2018 Nov 1;102:234–41.
  • Yan D, Zhang Y, Liu L, Shi N, Yan H. Pesticide exposure and risk of Parkinson’s disease: dose-response meta-analysis of observational studies. Regul Toxicol Pharmacol. 2018 Jul;96:57–63.
  • Warner TT, Schapira AH. Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S16–23. discussion S-5.
  • Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009 Apr 15;18(R1):R48–59.
  • Jankovic J, Poewe W. Therapies in Parkinson’s disease. Curr Opin Neurol. 2012 Aug;25(4):433–47.
  • Radhakrishnan DM, Goyal V. Parkinson’s disease: a review. Neurol India. 2018 Mar-Apr;66(Supplement):S26–S35.
  • Sang Q, Liu X, Wang L, Qi L, Sun W, Wang W, et al. Curcumin protects an sh-sy5y cell model of Parkinson’s disease against toxic injury by regulating hsp90. Cell Physiol Biochem. 2018;51(2):681–91.
  • Ramkumar M, Rajasankar S, Gobi VV, Dhanalakshmi C, Manivasagam T, Justin Thenmozhi A, et al. Neuroprotective effect of demethoxycurcumin, a natural derivative of curcumin on rotenone induced neurotoxicity in sh-sy 5y neuroblastoma cells. BMC Complement Altern Med. 2017 Apr 18;17(1):217.
  • Khatri DK, Juvekar AR. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease. Pharmacol Biochem Behav. 2016 Nov–Dec;150-151:39–47.
  • Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, et al. Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis. 2017 Dec;32(6):1791–803.
  • Ahmad B, Lapidus LJ. Curcumin prevents aggregation in alpha-synuclein by increasing reconfiguration rate. J Biol Chem. 2012 Mar 16;287(12):9193–9.
  • Spinelli KJ, Osterberg VR, Meshul CK, Soumyanath A, Unni VK. Curcumin treatment improves motor behavior in alpha-synuclein transgenic mice. PLoS One. 2015;10(6):e0128510.
  • Song S, Nie Q, Li Z, Du G. Curcumin improves neurofunctions of 6-ohda-induced parkinsonian rats. Pathol Res Pract. 2016 Apr;212(4):247–51.
  • Wang YL, Ju B, Zhang YZ, Yin HL, Liu YJ, Wang SS, et al. Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s disease through the wnt/ beta-catenin signaling pathway. Cell Physiol Biochem. 2017;43(6):2226–41.
  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-ohda model of Parkinson’s disease. Free Radic Res. 2005 Oct;39(10):1119–25.
  • Omerhoca S, Akkas SY, Icen NK. Multiple sclerosis: diagnosis and differential diagnosis. Noro Psikiyatr Ars. 2018;55(Suppl 1):S1–S9.
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000 Sep 28;343(13):938–52.
  • Sintzel MB, Rametta M, Reder AT. Vitamin d and multiple sclerosis: a comprehensive review. Neurol Ther. 2018 Jun;7(1):59–85.
  • Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother. 2013 Dec;13(12 Suppl.):3–9.
  • Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019 Jan;26(1):27–40.
  • International Multiple Sclerosis Genetics C, Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013 Nov;45(11):1353–60.
  • Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun. 2015 Nov;64:13–25.
  • Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ. Differential regulation of cd4(+) t helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem. 2012 Nov;23(11):1498–507.
  • Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, et al. Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol. 2014 Sep;22(1):230–5.
  • Mohajeri M, Sadeghizadeh M, Najafi F, Javan M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology. 2015 Dec;99:156–67.
  • Dolati S, Marofi F, Babaloo Z, Aghebati-Maleki L, Roshangar L, Ahmadi M, et al. Dysregulated network of Mirnas involved in the pathogenesis of multiple sclerosis. Biomed Pharmacother. 2018 Aug;104:280–90.
  • Zufiria M, Gil-Bea FJ, Fernandez-Torron R, Poza JJ, Munoz-Blanco JL, Rojas-Garcia R, et al. Als: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol. 2016 Jul;142:104–29.
  • Corcia P, Couratier P, Blasco H, Andres CR, Beltran S, Meininger V, et al. Genetics of amyotrophic lateral sclerosis. Rev Neurol (Paris. 2017 May;173(5):254–62.
  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated tdp-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006 Oct 6;314(5796):130–3.
  • Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, et al. Tdp-43 a315t mutation in familial motor neuron disease. Ann Neurol. 2008 Apr;63(4):535–8.
  • Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al. Tardbp mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008 May;40(5):572–4.
  • Patel BP, Hamadeh MJ. Nutritional and exercise-based interventions in the treatment of amyotrophic lateral sclerosis. Clin Nutr. 2009 Dec;28(6):604–17.
  • Lu J, Duan W, Guo Y, Jiang H, Li Z, Huang J, et al. Mitochondrial dysfunction in human tdp-43 transfected nsc34 cell lines and the protective effect of dimethoxy curcumin. Brain Res Bull. 2012 Dec 1;89(5–6):185–90.
  • Dong H, Xu L, Wu L, Wang X, Duan W, Li H, et al. Curcumin abolishes mutant tdp-43 induced excitability in a motoneuron-like cellular model of als. Neuroscience. 2014 Jul 11;272:141–53.
  • Bhatia NK, Srivastava A, Katyal N, Jain N, Khan MA, Kundu B, et al. Curcumin binds to the pre-fibrillar aggregates of cu/zn superoxide dismutase (sod1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity. Biochim Biophys Acta. 2015 May;1854(5):426–36.
  • Ahmadi M, Agah E, Nafissi S, Jaafari MR, Harirchian MH, Sarraf P, et al. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a pilot randomized clinical trial. Neurotherapeutics. 2018 Apr;15(2):430–8.
  • Dubowitz V. Benign infantile spinal muscular atrophy. Dev Med Child Neurol. 1974 Oct;16(5):672–5.
  • Pearn JH, Hudgson P, Walton JN. A clinical and genetic study of spinal muscular atrophy of adult onset: the autosomal recessive form as a discrete disease entity. Brain. 1978 Dec;101(4):591–606.
  • Bottai D, Adami R. Spinal muscular atrophy: new findings for an old pathology. Brain Pathol. 2013 Nov;23(6):613–22.
  • Darras BT. Spinal muscular atrophies. Pediatr Clin North Am. 2015 Jun;62(3):743–66.
  • Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet. 1997 Jul;16(3):265–9.
  • Gabanella F, Butchbach ME, Saieva L, Carissimi C, Burghes AH, Pellizzoni L. Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snrnps. PLoS One. 2007;2(9):e921.
  • Chari A, Paknia E, Fischer U. The role of RNP biogenesis in spinal muscular atrophy. Curr Opin Cell Biol. 2009 Jun;21(3):387–93.
  • Messina S. New directions for SMA therapy. J Clin Med. 2018 Aug 31;7(9). doi:https://doi.org/10.3390/jcm7090251.
  • Andrews JA, Miller TM, Vijayakumar V, Stoltz R, James JK, Meng L, et al. Ck-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve. 2018 May;57(5):729–34.
  • Sakla MS, Lorson CL. Induction of full-length survival motor neuron by polyphenol botanical compounds. Hum Genet. 2008 Jan;122(6):635–43.
  • Feng D, Cheng Y, Meng Y, Zou L, Huang S, Xie J. Multiple effects of curcumin on promoting expression of the exon 7-containing smn2 transcript. Genes Nutr. 2015 Nov;10(6):40.
  • Bora-Tatar G, Erdem-Yurter H. Investigations of curcumin and resveratrol on neurite outgrowth: Perspectives on spinal muscular atrophy. Biomed Res Int. 2014;2014:709108.
  • Daniela F, Vescovi AL, Bottai D. The stem cells as a potential treatment for neurodegeneration. Methods Mol Biol. 2007;399:199–213.
  • Bottai D, Madaschi L, Di Giulio AM, Gorio A. Viability-dependent promoting action of adult neural precursors in spinal cord injury. Mol Med. 2008 Sep-Oct;14(9-10):634–44.
  • Bottai D, Cigognini D, Madaschi L, Adami R, Nicora E, Menarini M, et al. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice. Exp Neurol. 2010 Jun;223(2):452–63.
  • Bottai D, Cigognini D, Nicora E, Moro M, Grimoldi MG, Adami R, et al. Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neurol Neurosci. 2012;30(1):55–68.
  • Bottai D, Scesa G, Cigognini D, Adami R, Nicora E, Abrignani S, et al. Third trimester ng2-positive amniotic fluid cells are effective in improving repair in spinal cord injury. Exp Neurol. 2014 Apr;254:121–33.
  • Veneruso V, Rossi F, Villella A, Bena A, Forloni G, Veglianese P. Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. J Control Release. 2019 Mar 6;300:141–53.
  • Yu DS, Cao Y, Mei XF, Wang YF, Fan ZK, Wang YS, et al. Curcumin improves the integrity of blood-spinal cord barrier after compressive spinal cord injury in rats. J Neurol Sci. 2014 Nov 15;346(1–2):51–9.
  • Yuan J, Zou M, Xiang X, Zhu H, Chu W, Liu W, et al. Curcumin improves neural function after spinal cord injury by the joint inhibition of the intracellular and extracellular components of glial scar. J Surg Res. 2015 May 1;195(1):235–45.
  • Jin W, Wang J, Zhu T, Yuan B, Ni H, Jiang J, et al. Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats. Inflamm Res. 2014 May;63(5):381–7.
  • Yuan J, Liu W, Zhu H, Chen Y, Zhang X, Li L, et al. Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo. Brain Res. 2017 Jan 15;1655:90–103.
  • Machova Urdzikova L, Karova K, Ruzicka J, Kloudova A, Shannon C, Dubisova J, et al. The anti-inflammatory compound curcumin enhances locomotor and sensory recovery after spinal cord injury in rats by immunomodulation. Int J Mol Sci. 2015 Dec 31;17(1). doi:https://doi.org/10.3390/ijms17010049.
  • Lin MS, Lee YH, Chiu WT, Hung KS. Curcumin provides neuroprotection after spinal cord injury. J Surg Res. 2011 Apr;166(2):280–9.
  • Gokce EC, Kahveci R, Gokce A, Sargon MF, Kisa U, Aksoy N, et al. Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia-reperfusion injury in rats. J Stroke Cerebrovasc Dis. 2016 May;25(5):1196–207.
  • Zhang N, Wei G, Ye J, Yang L, Hong Y, Liu G, et al. Effect of curcumin on acute spinal cord injury in mice via inhibition of inflammation and tak1 pathway. Pharmacol Rep. 2017 Oct;69(5):1001–6.
  • Allison DJ, Ditor DS. Targeting inflammation to influence mood following spinal cord injury: A randomized clinical trial. J Neuroinflammation. 2015 Nov 6;12:204.
  • Pinho J, Costa AS, Araujo JM, Amorim JM, Ferreira C. Intracerebral hemorrhage outcome: a comprehensive update. J Neurol Sci. 2019 Mar 15;398:54–66.
  • Grossman AW, Broderick JP. Advances and challenges in treatment and prevention of ischemic stroke. Ann Neurol. 2013 Sep;74(3):363–72.
  • Pluta R, Bogucka-Kocka A, Ulamek-Koziol M, Furmaga-Jablonska W, Januszewski S, Brzozowska J, et al. Neurogenesis and neuroprotection in postischemic brain neurodegeneration with Alzheimer phenotype: Is there a role for curcumin? Folia Neuropathol. 2015;53(2):89–99.
  • Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, et al. Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res. 2010 Mar;35(3):374–9.
  • Funk JL, Frye JB, Davis-Gorman G, Spera AL, Bernas MJ, Witte MH, et al. Curcuminoids limit neutrophil-mediated reperfusion injury in experimental stroke by targeting the endothelium. Microcirculation. 2013 Aug;20(6):544–54.
  • Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, et al. Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: The possible role of sirt1 signaling. Brain Res Bull. 2016 Mar;121:9–15.
  • Xia M, Ye Z, Shi Y, Zhou L, Hua Y. Curcumin improves diabetes mellitusassociated cerebral infarction by increasing the expression of glut1 and glut3. Mol Med Rep. 2018 Jan;17(1):1963–9.
  • Zhang Y, Yan Y, Cao Y, Yang Y, Zhao Q, Jing R, et al. Potential therapeutic and protective effect of curcumin against stroke in the male albino stroke-induced model rats. Life Sci. 2017 Aug 15;183:45–9.
  • Pluta R, Ulamek-Koziol M, Czuczwar SJ. Neuroprotective and neurological/cognitive enhancement effects of curcumin after brain ischemia injury with Alzheimer’s disease phenotype. Int J Mol Sci. 2018 Dec 12;19(12). doi:https://doi.org/10.3390/ijms19124002.
  • Shah FA, Gim SA, Sung JH, Jeon SJ, Kim MO, Koh PO. Identification of proteins regulated by curcumin in cerebral ischemia. J Surg Res. 2016 Mar;201(1):141–8.
  • Huang L, Chen C, Zhang X, Li X, Chen Z, Yang C, et al. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci. 2018 Jan;64(1):129–39.
  • Lan C, Chen X, Zhang Y, Wang W, Wang WE, Liu Y, et al. Curcumin prevents strokes in stroke-prone spontaneously hypertensive rats by improving vascular endothelial function. BMC Cardiovasc Disord. 2018 Mar 1;18(1):43.
  • Xie CJ, Gu AP, Cai J, Wu Y, Chen RC. Curcumin protects neural cells against ischemic injury in n2a cells and mouse brain with ischemic stroke. Brain Behav. 2018 Feb;8(2):e00921.
  • Beghi E, Giussani G. Aging and the epidemiology of epilepsy. Neuroepidemiology. 2018;51(3–4):216–23.
  • Beydoun A, D’Souza J. Treatment of idiopathic generalized epilepsy – a review of the evidence. Expert Opin Pharmacother. 2012 Jun;13(9):1283–98.
  • Perucca P, Perucca E. Identifying mutations in epilepsy genes: impact on treatment selection. Epilepsy Res. 2019 Mar 4;152:18–30.
  • Mehdizadeh A, Barzegar M, Negargar S, Yahyavi A, Raeisi S. The current and emerging therapeutic approaches in drug-resistant epilepsy management. Acta Neurol Belg. 2019 Mar 13;119(2):155–162. doi:https://doi.org/10.1007/s13760-019-01120-8.
  • Drion CM, Borm LE, Kooijman L, Aronica E, Wadman WJ, Hartog AF, et al. Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia. 2016 May;57(5):688–97.
  • He Q, Jiang L, Man S, Wu L, Hu Y, Chen W. Curcumin reduces neuronal loss and inhibits the nlrp3 inflammasome activation in an epileptic rat model. Curr Neurovasc Res. 2018;15(3):186–92.
  • Kumar V, Prakash C, Singh R, Sharma D. Curcumin’s antiepileptic effect, and alterations in nav1.1 and nav1.6 expression in iron-induced epilepsy. Epilepsy Res. 2019 Feb;150:7–16.
  • Khangura RK, Sharma J, Bali A, Singh N, Jaggi AS. An integrated review on new targets in the treatment of neuropathic pain. Korean J Physiol Pharmacol. 2019 Jan;23(1):1–20.
  • van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014 Apr;155(4):654–62.
  • Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacology. 2012 Feb;62(2):843–54.
  • Seo EJ, Efferth T, Panossian A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (oprl1) in isolated neuroglia cells. Phytomedicine. 2018 Nov 15;50:285–99.
  • Di YX, Hong C, Jun L, Renshan G, Qinquan L. Curcumin attenuates mechanical and thermal hyperalgesia in chronic constrictive injury model of neuropathic pain. Pain Ther. 2014 Jun;3(1):59–69.
  • Zammataro M, Sortino MA, Parenti C, Gereau R, Chiechio S. HDAC and hat inhibitors differently affect analgesia mediated by group ii metabotropic glutamate receptors. Mol Pain. 2014 Nov 18;10(68).
  • Baj T, Seth R. Role of curcumin in regulation of tnf-alpha mediated brain inflammatory responses. Recent Pat Inflamm Allergy Drug Discov. 2018;12(1):69–77.
  • Bianconi V, Sahebkar A, Atkin SL, Pirro M. The regulation and importance of monocyte chemoattractant protein-1. Curr Opin Hematol. 2018 Jan;25(1):44–51.
  • Garre JM, Yang G. Contributions of monocytes to nervous system disorders. J Mol Med (Berl). 2018 Sep;96(9):873–83.
  • Balasubramanian S, Eckert RL. Keratinocyte proliferation, differentiation, and apoptosis–differential mechanisms of regulation by curcumin, EGCG and apigenin. Toxicol Appl Pharmacol. 2007 Nov 1;224(3):214–9.
  • Adami R, Bottai D. Movement impairment: focus on the brain. J Neurosci Res. 2016 Apr;94(4):310–7.
  • Adami R, Pagano J, Colombo M, Platonova N, Recchia D, Chiaramonte R, et al. Reduction of movement in neurological diseases: effects on neural stem cells characteristics. Front Neurosci. 2018;12(336). doi:https://doi.org/10.3389/fnins.2018.00336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.